Navigation Links
Volume of nuclear waste could be reduced by 90 percent, says new research
Date:11/6/2013

The researchers, from the University of Sheffield's Faculty of Engineering, have shown that mixing plutonium-contaminated waste with blast furnace slag and turning it into glass reduces its volume by 85-95 per cent. It also effectively locks in the radioactive plutonium, creating a stable end product.

The approach could also be applicable to treating large volume mixed wastes generated during the eventual clean-up of the damaged Fukushima plant.

"The overall volume of plutonium contaminated wastes from operations and decommissioning in the UK could be upwards of 31,000 m3, enough to fill the clock tower of Big Ben seven times over," says lead researcher, Professor Neil Hyatt. "Our process would reduce this waste volume to fit neatly within the confines of just one Big Ben tower."

The current treatment method for non-compactable plutonium contaminated wastes involves cement encapsulation, a process which typically increases the overall volume. Hyatt says, "If we can reduce the volume of waste that eventually needs to be stored and buried underground, we can reduce the costs considerably. At the same time, our process can stabilise the plutonium in a more corrosion resistant material, so this should improve the safety case and public acceptability of geological disposal."

Although the ultimate aim for higher activity wastes is geological disposal, no disposal sites have yet been agreed in the UK.

Plutonium contaminated waste is a special type of higher activity waste, associated with plutonium production, and includes filters, used personal protective equipment (PPE) and decommissioning waste such as metals and masonry.

Using cerium as a substitute for plutonium, the Sheffield team mixed representative plutonium contaminated wastes with blast furnace slag, a commonly available by-product from steel production, and heated them to turn the material into glass, a process known as vitrification.

A key element of the research, funded by Sellafield Ltd and the Engineering and Physical Sciences Research Council (EPSRC), was to show that a single process and additive could be used to treat the expected variation of wastes produced, to ensure the technique would be cost effective.

"Cerium is known to behave in similar ways to plutonium so provides a good, but safe, way to develop techniques like this," explains Professor Hyatt. "Our method produces a robust and stable final product, because the thermal treatment destroys all plastics and organic material. This is an advantage because it is difficult to predict with certainty how the degradation of plastic and organic materials affects the movement of plutonium underground."

Professor Hyatt is now working on optimising the vitrification process to support full scale demonstration and plans future investigation of small scale plutonium experiments.


'/>"/>

Contact: Abigail Chard
abigail_chard@yahoo.co.uk
44-079-604-48532
University of Sheffield
Source:Eurekalert

Related biology news :

1. Neurotechnology Announces MegaMatcher Accelerator 6.0 High-speed, High-volume Multibiometric Identification Solution and Updates to Entire Biometric Product Line
2. News tips from the journal mBio®, volume 4, issue 1
3. NYBG press publishes final volume of landmark Intermountain Flora series
4. AcelRx Pharmaceuticals Receives First U.S. Patent for Small-Volume Oral Transmucosal Dosage Forms
5. Striatal brain volume predicts Huntington disease onset
6. BUSM researchers identify genes that influence hippocampal volume
7. CNIO researchers identify a new gene that is essential for nuclear reprogramming
8. Invention could make spent nuclear fuel useful for irradiation purposes
9. UT MD Anderson scientists uncover the nuclear life of actin
10. Fallout from nuclear testing shows that the Achilles tendon cant heal itself
11. Biologists map rare case of fitness-reducing interaction in nuclear, mitochondrial DNA
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... Apr. 11, 2017 Research and Markets has ... report to their offering. ... The global eye tracking market to grow at a CAGR of ... Eye Tracking Market 2017-2021, has been prepared based on an in-depth ... market landscape and its growth prospects over the coming years. The ...
(Date:4/5/2017)... Today HYPR Corp. , leading innovator ... of the HYPR platform is officially FIDO® Certified ... architecture that empowers biometric authentication across Fortune 500 enterprises ... over 15 million users across the financial services industry, ... product suites and physical access represent a growing portion ...
(Date:3/30/2017)... 2017 The research team of The Hong ... fingerprint identification by adopting ground breaking 3D fingerprint minutiae recovery and ... speed and accuracy for use in identification, crime investigation, immigration control, ... ... A research team led ...
Breaking Biology News(10 mins):
(Date:4/20/2017)... ... ... USDM Life Sciences , the leading risk management, technological innovation and ... announce Holger Braemer as Vice President of its Europe division and Managing ... , Braemer is an integral part of USDM’s expansion of services and solutions for ...
(Date:4/20/2017)... LAVAL, QC , April 20, 2017 /PRNewswire/ - Prometic Life ... today presented new results at the International Liver Congress ("ILC") ... Liver ("EASL") in Amsterdam on the ... in a mouse model of obesity and metabolic syndrome. ... According to Dr. Lyne Gagnon, ...
(Date:4/20/2017)... ... April 20, 2017 , ... Open Therapeutics and the ... sharing and commercialization model. , The Center for Advancing Innovation helps institutions maximize ... effort is bringing the IP to the attention of the entrepreneurial community and ...
(Date:4/20/2017)... , April 20, 2017 For today, ... on novel drug development and clinical research aimed at treating ... Inc. (NASDAQ: BSTG), Keryx Biopharmaceuticals Inc. (NASDAQ: KERX), Kite Pharma ... ZIOP ). You can access our complimentary research reports on ... ...
Breaking Biology Technology: