Navigation Links
Volcanoes may have provided sparks and chemistry for first life

GREENBELT, Md. - Lightning and gases from volcanic eruptions could have given rise to the first life on Earth, according to a new analysis of samples from a classic origin-of-life experiment by NASA and university researchers. The NASA-funded result is the subject of a paper in Science appearing October 16.

"Historically, you don't get many experiments that might be more famous than these; they re-defined our thoughts on the origin of life and showed unequivocally that the fundamental building blocks of life could be derived from natural processes," said lead author Adam Johnson, a graduate student with the NASA Astrobiology Institute team at Indiana University, Bloomington, Ind.

From 1953 to 1954, Professor Stanley Miller, then at the University of Chicago, performed a series of experiments with a system of closed flasks containing water and a gas of simple molecules. At the time, the molecules used in the experiment (hydrogen, methane, and ammonia) were thought to be common in Earth's ancient atmosphere.

The gas was zapped with an electric spark. After running the experiment for a few weeks, the water turned brown. When Miller analyzed the water, he found it contained amino acids, which are the building blocks of proteins -- life's toolkit -- used in everything from structures like hair and nails to processes that speed up, facilitate, and regulate chemical reactions. The spark provided the energy for the molecules to recombine into amino acids, which rained out into the water. His experiment showed how simple molecules could be assembled into the more complex molecules necessary for life by natural processes, like lightning in Earth's primordial atmosphere.

Miller came to the Chemistry Department at the University of California, San Diego in 1960. Professor Jeffrey Bada, a co-author of the paper, was his graduate student in chemistry between 1965 and 1968. Bada joined the faculty of the Scripps Institution of Oceanography (part of UCSD) in 1971.

"Stanley and I continued to work on various projects until he died in 2007. When Adam and I found the samples from the original experiments, it was a great opportunity to reanalyze these historic samples using modern methods," said Bada. The team wanted to see if modern equipment could discover chemicals that could not be detected with the techniques of the 1950s. They analyzed the samples and turned to Daniel Glavin and Jason Dworkin of NASA's Goddard Space Flight Center in Greenbelt, Md., who helped the analysis with state-of-the-art instruments in their Goddard Astrobiology Analytical lab.

Miller actually ran three slightly different experiments, one of which injected steam into the gas to simulate conditions in the cloud of an erupting volcano. "We found that in comparison to Miller's classic design everyone is familiar with from textbooks, samples from the volcanic apparatus produced a wider variety of compounds," said Bada.

"We discovered 22 amino acids, 10 of which have never been found in any other experiment like this," said Glavin. This is significant because thinking on the composition of Earth's early atmosphere has changed. Instead of being heavily laden with hydrogen, methane, and ammonia, many scientists now believe Earth's ancient atmosphere was mostly carbon dioxide, carbon monoxide, and nitrogen.

"At first glance, if Earth's early atmosphere had little of the molecules used in Miller's classic experiment, it becomes difficult to see how life could begin using a similar process. However, in addition to water and carbon dioxide, volcanic eruptions also release hydrogen and methane gases. Volcanic clouds are also filled with lightning, since collisions between volcanic ash and ice particles generate electric charge. Since the young Earth was still hot from its formation, volcanoes were probably quite common then. The organic precursors for life could have been produced locally in tidal pools around volcanic islands, even if hydrogen, methane, and ammonia were scarce in the global atmosphere. As the tidal pools evaporated, they would concentrate the amino acids and other molecules, making it more likely that right sequence of chemical reactions to start life could occur. In fact, volcanic eruptions could assist the origin of life in another way as well they produce carbonyl sulfide gas, which helps link amino acids into chains called peptides." said Glavin.


Contact: Nancy Neal-Jones
NASA/Goddard Space Flight Center

Related biology news :

1. Venus Express reboots the search for active volcanoes on Venus
2. Studying volcanoes with balloons
3. Freshman class sparks start-up company
4. Computational actinide chemistry: Are we there yet?
5. American Chemical Society calls green chemistry bill a smart step
6. Using green chemistry to deliver cutting-edge drugs
7. Chemistry turns killer gas into potential cure
8. K-State chemistry professor to receive Masao Horiba award
9. Biogeochemistry -- A window into the Earths ecological health
10. Going live with click chemistry
11. Story ideas from the Journal of Biological Chemistry
Post Your Comments:
Related Image:
Volcanoes may have provided sparks and chemistry for first life
(Date:11/17/2015)... Pressure BioSciences, Inc. (OTCQB: PBIO) ("PBI" and ... of broadly enabling, pressure cycling technology ("PCT")-based sample preparation ... it has received gross proceeds of $745,000 from an ... "Offering"), increasing the total amount raised to date in ... are expected in the near future. ...
(Date:11/12/2015)... 2015  Arxspan has entered into an agreement ... for use of its ArxLab cloud-based suite of ... partnership will support the institute,s efforts to electronically ... information internally and with external collaborators. The ArxLab ... the Institute,s electronic laboratory notebook, compound and assay ...
(Date:11/10/2015)...  In this report, the biomarkers market ... type, application, disease indication, and geography. The ... consumables, services, software. The type segments included ... biomarkers, and validation biomarkers. The applications segments ... drug discovery and development, personalized medicine, disease ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... ... 2015 , ... Copper is an essential micronutrient that all ... copper is also toxic to cells. With a $1.3 million award from the ... a systematic study of copper in the bacteria Pseudomonas aeruginosa (P. aeruginosa), a ...
(Date:11/24/2015)... PUNE, India , November 24, 2015 ... to a new market research report "Oligonucleotide Synthesis Market ... Equipment), Application (PCR, Gene Synthesis, Diagnostic, DNA, RNAi), End-User ... to 2020", published by MarketsandMarkets, the market is expected ... 1,078.1 Million in 2015, at a CAGR of 10.1% ...
(Date:11/24/2015)... --> --> ... by Transparency Market Research, the global non-invasive prenatal testing ... 17.5% during the period between 2014 and 2022. The ... Analysis, Size, Volume, Share, Growth, Trends and Forecast 2014 ... to reach a valuation of US$2.38 bn by 2022. ...
(Date:11/24/2015)... ... November 24, 2015 , ... In harsh industrial processes, the ... in-line sensors can represent a weak spot where leaking process media is a ... sensor housings , which are designed to tolerate extreme process conditions. They combine ...
Breaking Biology Technology: