Navigation Links
Various species' genes evolve to minimize protein production errors
Date:7/24/2008

CAMBRIDGE, Mass. -- Scientists at Harvard University and the University of Texas at Austin have found that genetic evolution is strongly shaped by genes' efforts to prevent or tolerate errors in protein production.

Their study also suggests that the cost of errors in protein production may lie in the malformed proteins themselves, rather than the loss of functional proteins. Misfolded proteins can build up in long-lived cells, like neurons, and cause neurodegenerative diseases.

The work, by D. Allan Drummond at Harvard and Claus O. Wilke at Texas, is described in the July 25 issue of the journal Cell.

"It has long been believed that the main force of natural selection on protein-coding genes is the need to maintain a working protein," says Drummond, a Bauer Fellow in Harvard's FAS Center for Systems Biology. "Our work suggests that another force may be equally important: the need to avoid misfolded proteins resulting from errors in translation."

Protein molecules must fold to become biologically active, and mistakes can cause misfolding, which can be toxic. Yet the protein-producing factories in our cells are estimated to make mistakes in 20 percent of the molecules they produce. Adaptations to this surprising sloppiness may be crucial in understanding the evolution of genes across species, from bacteria to humans, say Drummond and Wilke.

Essentially, they write, natural selection has fostered the evolution of genes that minimize the effects of errors in translation, the production of proteins from genetic templates in cells. An example is the careful placement of codons, which are sections of DNA that code for amino acids, the building blocks of proteins. Some codons translate more accurately, and previous research had suggested that high-fidelity codons are positioned at key locations in the genome, where a mistake might be harmful. These studies, however, had only considered fast-growing organisms like E. coli bacteria and fruit flies.

"Contrary to what was believed, our work shows that even in the human genome, codons are positioned to minimize errors," says Wilke, assistant professor of integrative biology at Texas. "Just like a mistake on your taxes is more costly than a mistake on your grocery list -- so you concentrate more on your taxes -- cells seem to concentrate on preventing mistakes that might result in costly misfolded proteins."

Drummond and Wilke analyzed humans, mice, fruit flies, worms, yeast and E. coli bacteria and discovered that all of these organisms have evolved ways to prevent the production of costly aberrant proteins.

"Finding such sweeping effects from a single, simple cost has the potential to reshape the way evolution is studied at the molecular level," Drummond says. "While much work has focused on how evolution makes creatures different, our work emphasizes fundamental ways in which all life is the same."

While evolutionary studies are often retrospective, Drummond and Wilke also developed a molecular-level evolutionary simulation, allowing them to track the evolution of genomes encoding many simple proteins over millions of generations. In some simulations, they added evolutionary costs for misfolded proteins, while in others this cost was not factored in. They found that genomes evolving with misfolding costs developed all the genome-wide patterns seen in real organisms, while those evolving without costs did not.

The work could have long-term implications for our understanding of neurodegenerative diseases. Misfolded proteins are known to accumulate in neurons and are central players in fatal disorders such as amyotrophic lateral sclerosis, better known as Lou Gehrig's disease. Drummond and Wilke suggest that mistranslation may contribute to long-studied forms of ALS and other similar diseases.

Wilke says the current study may lead to better ways to detect genes with mutations that lead to production of toxic, misfolded proteins, and ultimately, to a better understanding of neurodegenerative disease.

"These genes may produce proteins that look innocuous but nevertheless cause a severe disease condition," Wilke says.


'/>"/>

Contact: Steve Bradt
steve_bradt@harvard.edu
617-496-8070
Harvard University
Source:Eurekalert

Related biology news :

1. Study suggests past climate changes may have promoted the formation of new species in the Amazon
2. Global warming experts recommend drastic measures to save species
3. From humming fish to Puccini: Vocal communication evolved with ancient species
4. Incentives for carbon sequestration may not protect species
5. Setting the record right: species diversity less dramatic than previously believed
6. Species have come and gone at different rates than previously believed
7. Census of Marine Life lists 122,500 known species, over halfway to complete inventory by Oct. 2010
8. New bee checklist lets scientists link important information about all bee species
9. World-class environment vision to bring back the species
10. First successful reverse vasectomy on endangered species performed at the National Zoo
11. Threatened or invasive? Species fates identified
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/22/2016)... PROVO and SANDY, Utah ... (NSO), which operates the highest sample volume laboratory in ... Tute Genomics and UNIConnect, leaders in clinical sequencing informatics ... the launch of a project to establish the informatics ... NSO has been contracted by the ...
(Date:3/17/2016)... , March 17, 2016 ABI Research, ... forecasts the global biometrics market will reach more ... 118% increase from 2015. Consumer electronics, particularly smartphones, ... fingerprint sensors anticipated to reach two billion shipments ... Dimitrios Pavlakis , Research Analyst at ABI ...
(Date:3/14/2016)... , March 14, 2016 NXTD ) ... mobile commerce market, announces the airing of a new series ... the week of March 21 st .  The commercials will ... its popular Squawk on the Street show. --> ... the growing mobile commerce market, announces the airing of a ...
Breaking Biology News(10 mins):
(Date:5/2/2016)... ... ... StarNet Communications Corp, ( http://www.starnet.com/ ) a leading publisher of remote Linux ... to its flagship X-Win32 PC X server. The new modules enable X-Win32 to ... over encrypted SSH. , Traditionally, users of PC X servers deploy the XDMCP protocol ...
(Date:4/29/2016)... , April 29, 2016 ... by Transparency Market Research "Separation Systems for Commercial ... Growth, Trends, and Forecast 2015 - 2023", the ... at US$ 10,665.5 Mn in 2014 and is ... from 2015 to 2023 to reach US$ 19,227.8 ...
(Date:4/28/2016)... The report "Cryocooler Market by ... (Technical Support, Product Repairs & Refurbishment, Preventive Maintenance, and ... 2022", published by MarketsandMarkets, the global market is expected ... a CAGR of 7.29% between 2016 and 2022. ... Figures spread through 159 Pages and in-depth TOC on ...
(Date:4/28/2016)... ... April 28, 2016 , ... Morris ... open house for regional manufacturers at its Maple Grove, Minnesota technical center, May ... Group, Chiron and Trumpf. Almost 20 leading suppliers of tooling, accessories, software ...
Breaking Biology Technology: