Navigation Links
Vaccines for HIV: A new design strategy
Date:2/23/2012

San Diego, Calif. HIV has eluded vaccine-makers for thirty years, in part due to the virus' extreme ability to mutate. Physical scientists and clinical virologists from the Massachusetts Institute of Technology (MIT) and the Ragon Institute in Cambridge, Mass., have identified a promising strategy for vaccine design using a mathematical technique that has also been used in problems related to quantum physics, as well as in analyses of stock market price fluctuations and studies of enzyme sequences. The team, led by Arup Chakraborty of MIT and Bruce Walker of the Ragon Institute, will give an update on its work at the Biophysical Society 56th Annual Meeting, held Feb. 25-29 in San Diego, Calif.

Vaccines prime the immune system to target molecular signatures associated with a particular pathogen. But HIV's ability to mutate has made it difficult to identify reliable vaccine targets. In their search for a new type of target, the team from the Ragon Institute did not focus on individual amino acids. Instead, the researchers sought to identify independently evolving groups of amino acids where, within each group, amino acids mutate in tandem (meaning that they rely on one another to maintain the viability of the virus). In particular, they looked for groups of amino acids within which combinations of mutations would have a greater chance of making the virus unviable. By staging a multi-pronged attack against these regions of HIV, the researchers reasoned, they might be able to trap the virus between two bad choices: be destroyed by the immune system, or mutate and destroy itself.

With a mathematical tool called random matrix theory, the team searched for high-order evolutionary constraints in the so-called Gag region of HIV. The researchers were looking for collectively co-evolving groups of amino acids with a high number of negative correlations (meaning multiple mutations would destroy the virus) and a low number of positive correlations (meaning the virus could survive multiple mutations). They found this combination in a region, which they call Gag sector 3, that is involved in stabilizing the protein shell of the virus: too many mutations here, and the virus' structure would collapse.

Interestingly, when the team studied HIV-infected individuals whose bodies are naturally able to fend off the virus' attacks so-called "elite controllers" they found that these individuals' immune systems preferentially targeted Gag sector 3 over other proteins.

At the moment, the study authors are working to extend their methods to HIV proteins beyond Gag. The team is also developing elements of the active components of a vaccine that would prime the immune system to selectively target Gag sector 3 proteins. They expect to begin testing in animal models soon.

The presentation, "Analysis of collective coevolution in HIV proteins suggests strategies for rational vaccine design," will be presented by Dr. Chakraborty's graduate student Karthik Shekhar at 12:30 p.m. on Sunday, Feb. 26, 2012, in the San Diego Convention Center, Room 24ABC. ABSTRACT: http://tinyurl.com/6sz7kuf


'/>"/>

Contact: Ellen R. Weiss
eweiss@biophysics.org
240-290-5606
American Institute of Physics
Source:Eurekalert

Related biology news :

1. New type of vaccines deliver stronger and faster immune response
2. Vaccines and autism: Many hypotheses, but no correlation
3. New evidence explains poor infant immune response to certain vaccines, says MU researcher
4. Princeton teams analysis of flu virus could lead to better vaccines
5. Study shows cancer vaccines led to long-term survival for patients with metastatic melanoma
6. Pitt researchers find promising candidate protein for cancer prevention vaccines
7. Bug barcode readers hold out promise of universal vaccines
8. Major breakthrough may pave the way for therapeutic vaccines
9. GEN reports on the promise of DNA vaccines
10. Vaccines preventing pneumococcal disease protect African children with sickle-cell disease
11. Prescription drug could boost effects of vaccines for HIV and other diseases
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/16/2017)... -- Veratad Technologies, LLC ( www.veratad.com ), an innovative and ... solutions, announced today they will participate as a sponsor ... May 17, 2017, in Washington D.C.,s ... Identity impacts the lives of billions of ... digital world, defining identity is critical to nearly every ...
(Date:5/6/2017)... SINGAPORE , May 5, 2017 ... has just announced a new breakthrough in biometric ... that exploits quantum mechanical properties to perform ... new smart semiconductor material created by Ram Group ... across finance, entertainment, transportation, supply chains and security. ...
(Date:4/19/2017)... York , April 19, 2017 ... as its vendor landscape is marked by the presence ... market is however held by five major players - ... Together these companies accounted for nearly 61% of the ... the leading companies in the global military biometrics market ...
Breaking Biology News(10 mins):
(Date:10/9/2017)... Phoenix, Arizona (PRWEB) , ... October 09, 2017 ... ... of Kindred, a four-tiered line of medical marijuana products targeting the needs of ... production and packaging of Kindred takes place in Phoenix, Arizona. , As operators ...
(Date:10/7/2017)... (PRWEB) , ... October 06, ... ... years’ experience providing advanced instruments and applications consulting for microscopy and surface ... expertise in application consulting, Nanoscience Analytical offers a broad range of contract ...
(Date:10/7/2017)... , Oct. 6, 2017  The 2017 ... of three scientists, Jacques Dubochet, Joachim Frank ... developments in cryo-electron microscopy (cryo-EM) have ... within the structural biology community. The winners worked ... can now routinely produce highly resolved, three-dimensional images ...
(Date:10/6/2017)... ... October 06, 2017 , ... On ... and webinar on INSIGhT, the first-ever adaptive clinical trial for glioblastoma (GBM). The ... The event is free and open to the public, but registration is required. ...
Breaking Biology Technology: