Navigation Links
Vaccines for HIV: A new design strategy

San Diego, Calif. HIV has eluded vaccine-makers for thirty years, in part due to the virus' extreme ability to mutate. Physical scientists and clinical virologists from the Massachusetts Institute of Technology (MIT) and the Ragon Institute in Cambridge, Mass., have identified a promising strategy for vaccine design using a mathematical technique that has also been used in problems related to quantum physics, as well as in analyses of stock market price fluctuations and studies of enzyme sequences. The team, led by Arup Chakraborty of MIT and Bruce Walker of the Ragon Institute, will give an update on its work at the Biophysical Society 56th Annual Meeting, held Feb. 25-29 in San Diego, Calif.

Vaccines prime the immune system to target molecular signatures associated with a particular pathogen. But HIV's ability to mutate has made it difficult to identify reliable vaccine targets. In their search for a new type of target, the team from the Ragon Institute did not focus on individual amino acids. Instead, the researchers sought to identify independently evolving groups of amino acids where, within each group, amino acids mutate in tandem (meaning that they rely on one another to maintain the viability of the virus). In particular, they looked for groups of amino acids within which combinations of mutations would have a greater chance of making the virus unviable. By staging a multi-pronged attack against these regions of HIV, the researchers reasoned, they might be able to trap the virus between two bad choices: be destroyed by the immune system, or mutate and destroy itself.

With a mathematical tool called random matrix theory, the team searched for high-order evolutionary constraints in the so-called Gag region of HIV. The researchers were looking for collectively co-evolving groups of amino acids with a high number of negative correlations (meaning multiple mutations would destroy the virus) and a low number of positive correlations (meaning the virus could survive multiple mutations). They found this combination in a region, which they call Gag sector 3, that is involved in stabilizing the protein shell of the virus: too many mutations here, and the virus' structure would collapse.

Interestingly, when the team studied HIV-infected individuals whose bodies are naturally able to fend off the virus' attacks so-called "elite controllers" they found that these individuals' immune systems preferentially targeted Gag sector 3 over other proteins.

At the moment, the study authors are working to extend their methods to HIV proteins beyond Gag. The team is also developing elements of the active components of a vaccine that would prime the immune system to selectively target Gag sector 3 proteins. They expect to begin testing in animal models soon.

The presentation, "Analysis of collective coevolution in HIV proteins suggests strategies for rational vaccine design," will be presented by Dr. Chakraborty's graduate student Karthik Shekhar at 12:30 p.m. on Sunday, Feb. 26, 2012, in the San Diego Convention Center, Room 24ABC. ABSTRACT:


Contact: Ellen R. Weiss
American Institute of Physics

Related biology news :

1. New type of vaccines deliver stronger and faster immune response
2. Vaccines and autism: Many hypotheses, but no correlation
3. New evidence explains poor infant immune response to certain vaccines, says MU researcher
4. Princeton teams analysis of flu virus could lead to better vaccines
5. Study shows cancer vaccines led to long-term survival for patients with metastatic melanoma
6. Pitt researchers find promising candidate protein for cancer prevention vaccines
7. Bug barcode readers hold out promise of universal vaccines
8. Major breakthrough may pave the way for therapeutic vaccines
9. GEN reports on the promise of DNA vaccines
10. Vaccines preventing pneumococcal disease protect African children with sickle-cell disease
11. Prescription drug could boost effects of vaccines for HIV and other diseases
Post Your Comments:
(Date:4/19/2016)... -- The new GEZE SecuLogic access control ... system solution for all door components. It can be ... interface with integration authorization management system, and thus fulfills ... dimensions of the access control and the optimum integration ... considerable freedom of design with regard to the doors. ...
(Date:4/13/2016)... , April 13, 2016  IMPOWER physicians supporting Medicaid ... setting a new clinical standard in telehealth thanks to ... leveraging the higi platform, IMPOWER patients can routinely track ... and body mass index, and, when they opt in, ... convenient visit to a local retail location at no ...
(Date:3/23/2016)... Massachusetts , March 23, 2016 /PRNewswire/ ... im Interesse erhöhter Sicherheit Gesichts- und Stimmerkennung ... Xura, Inc. (NASDAQ: MESG ), ... bekannt, dass das Unternehmen mit SpeechPro zusammenarbeitet, ... aus der Finanzdienstleistungsbranche, wird die Möglichkeit angeboten, ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... /PRNewswire/ - FACIT has announced the creation of ... company, Propellon Therapeutics Inc. ("Propellon" or "the Company"), ... portfolio of first-in-class WDR5 inhibitors for the treatment ... represent an exciting class of therapies, possessing the ... cancer patients. Substantial advances have been achieved with ...
(Date:6/23/2016)... 2016  The Biodesign Challenge (BDC), a university competition ... harness living systems and biotechnology, announced its winning teams ... New York City . The ... projects at MoMA,s Celeste Bartos Theater during the daylong ... senior curator of architecture and design, and Suzanne ...
(Date:6/23/2016)... 23, 2016 Apellis Pharmaceuticals, Inc. today ... trials of its complement C3 inhibitor, APL-2. The ... ascending dose studies designed to assess the safety, ... injection in healthy adult volunteers. Forty ... a single dose (ranging from 45 to 1,440mg) ...
(Date:6/23/2016)... WI (PRWEB) , ... June 23, 2016 , ... ... focused on quality, regulatory and technical consulting, provides a free webinar ... presented on July 13, 2016 at 12pm CT at no charge. , Incomplete ...
Breaking Biology Technology: