Navigation Links
Using planarian flatworms to understand organ regeneration
Date:10/25/2012

CHAMPAIGN, Ill. Researchers report in the journal Developmental Cell that they have identified genes that control growth and regeneration of the intestine in the freshwater planarian Schmidtea mediterranea.

"How animals repair their internal organs after injury is not well understood," said University of Illinois cell and developmental biology professor Phillip Newmark, who led the study. "Planarian flatworms are useful models for studying this question."

After injury, planaria are able to re-grow missing body parts, including any organs that are damaged or lost, such as brain, eyes, and intestine. Injury initiates a complex set of cellular events, Newmark said. In planarians, specialized non-reproductive stem cells called neoblasts divide and give rise to all of the different cell types required to rebuild fully functional body parts. Old tissue remaining after amputation remodels and integrates with the new cells.

"The molecular signaling pathways that coordinate these cellular events to achieve organ regeneration have not been well characterized," Newmark said.

David Forsthoefel, a postdoctoral researcher in Newmark's laboratory and the lead author on the study, wanted to address the problem using the planarian intestine as a "model organ," in part because so few animals are capable of repairing severe damage to their digestive systems.

"The ability to recover from loss of digestive tissue is rare in the animal kingdom," Forsthoefel said. "What we learn from how a simple worm deals with gut damage might one day help us to come up with better medical therapies, for example in the treatment of short bowel syndrome, in which segments of intestine must be removed from patients with digestive diseases, leading to impaired nutrient absorption."

Forsthoefel developed a method for purifying a single intestinal cell type from the planarian gut. He and his colleagues in the Newmark lab identified over a thousand genes that were uniquely expressed at higher levels in intestinal cells than in the surrounding tissues. Guessing that some of these genes would have important roles during intestinal growth and regeneration, they probed the function of a subset of these genes using a technique called RNA interference, in which the expression of individual genes is selectively inhibited. The researchers were able to pinpoint functions for specific genes, for example, genes involved in the establishment of the appropriate pattern of intestinal branches, and the production of functional intestinal cells capable of taking up nutrients.

The authors also identified a transcription factor called nkx-2.2 that, although expressed in the intestine, was required for neoblasts to proliferate in various contexts, including after injury. This result suggests a potential role for the intestine in regulating stem cell division, a result Forsthoefel is following up by identifying genes downstream of Nkx-2.2 that might have more direct roles in communication between the intestine and neoblasts.

"How cells in the vicinity of damaged tissue contribute to the choices stem cells make in response to injury is an area of regeneration biology where much more research is needed," Forsthoefel said. The field of regeneration research is rife with such uncharted territory. How do animals manage to produce the correct number specific cell types, at the correct locations? What are the signals that instruct stem cells to become specific cell types, and where do they come from? How is organ-specific morphology, for example the number of intestinal branches, determined? This study from the Newmark lab, the first systematic effort to elucidate intestinal morphogenesis in planarians, lays the groundwork for addressing many of these fundamental questions of organ regeneration.


'/>"/>
Contact: Phillip Newmark, Professor of Cell and Developmental Biology
pnewmark@life.illinois.edu
217-244-4674
School of Molecular and Cellular Biology, University of Illinois, Urbana
Source:Eurekalert  

Related biology news :

1. The slippery slope to slime: Overgrown algae causing coral reef declines
2. App lets you monitor lung health using only a smartphone
3. Deep-sea crabs seek food using ultraviolet vision
4. New study shows promise in using RNA nanotechnology to treat cancers and viral infections
5. NIH-funded researchers restore sense of smell in mice using genetic technique
6. Researchers identify key culprit causing muscle atrophy
7. Using millions of years of cell evolution in the fight against cancer
8. Frequent traveller: Dysentery-causing bacteria spreading from Europe to Australia
9. Using wastewater as fertilizer
10. 3-D motion of cold virus offers hope for improved drugs using Australias fastest supercomputer
11. Real-life spider men using protein found in venom to develop muscular dystrophy treatment
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Using planarian flatworms to understand organ regeneration
(Date:2/8/2016)... , February 8, 2016 ... payment platform which presents innovation for clients, comfort ... feature called VoiceKey. --> Worldcore ... presents innovation for clients, comfort and unbeatable security, ... --> Worldcore is the ...
(Date:2/3/2016)... Vigilant Solutions announces today that the ... Missouri solved two recent hit-and-run cases with ... Vigilant Solutions. Brian Wenberg explains, "I ... was walking out of a convenience store and witnessed an elderly male back ... striking his vehicle and leaving the scene.  In his ...
(Date:2/2/2016)... 2, 2016 Technology Enhancements Accelerate Growth of X-ray ... the digital and computed radiography markets in ... Indonesia (TIM). It provides an ... as well as regional market drivers and restraints. The ... penetration and market attractiveness, both for digital and computed ...
Breaking Biology News(10 mins):
(Date:2/12/2016)... ... February 12, 2016 , ... The Pittcon 2016 Exposition, ... Georgia, will include 848 exhibitors (count as of February 9) of which 119 ... services used by the scientific community in industrial, academic, and government labs. The ...
(Date:2/11/2016)... DIEGO, Feb. 11, 2016  Neurocrine Biosciences, Inc. (NASDAQ: NBIX ... ended December 31, 2015. --> ... a net loss of $29.3 million, or $0.34 loss per share, ... per share for the same period in 2014. For the year ... $88.9 million, or $1.05 loss per share, as compared to a ...
(Date:2/11/2016)... ATLANTA , Feb. 11, 2016  Wellcentive ... a Portland, Oregon -based community ... to provide population health analytics, quality reporting and ... help FamilyCare strengthen its team of quality managers, ... reporting to the provider groups serving FamilyCare members. ...
(Date:2/11/2016)... ... February 11, 2016 , ... Reichert ... years, continues today to pursue the highest level of accuracy and quality with ... AR9 Refractometer and the AR5 Refractometer. Accurate, reliable and tough enough for ...
Breaking Biology Technology: