Navigation Links
Using magnetism to turn drugs on and off
Date:9/18/2009

Many medical conditions, such as chronic pain, cancer and diabetes, require medications that cannot be taken orally, but must be dosed intermittently, on an as-needed basis, over a long period of time. A few delivery techniques have been developed, using an implanted heat source, an implanted electronic chip or other stimuli as an "on-off" switch to release the drugs into the body. But thus far, none of these methods can reliably do all that's needed: repeatedly turn dosing on and off, deliver consistent doses and adjust doses according to the patient's need.

Researchers led by Daniel Kohane, MD, PhD of Children's Hospital Boston, funded by the National Institutes of Health, have devised a solution that combines magnetism with nanotechnology.

The team created a small implantable device, less than " in diameter, that encapsulates the drug in a specially engineered membrane, embedded with nanoparticles (approximately 1/100,000 the width of a human hair) composed of magnetite, a mineral with natural magnetic properties. When a magnetic field is switched on outside the body, near the device, the nanoparticles heat up, causing the gels in the membrane to warm and temporarily collapse. This opens up pores that allow the drug to pass through and into the body. When the magnetic force is turned off, the membranes cool and the gels re-expand, closing the pores back up and halting drug delivery. No implanted electronics are required.

The device, which Kohane's team is continuing to develop for clinical use, is described in the journal Nano Letters (published online September 8, DOI: 10.1021/nl9018935).

"A device of this kind would allow patients or their physicians to determine exactly when drugs are delivered, and in what quantities," says Kohane, who directs the Laboratory for Biomaterials and Drug Delivery in the Department of Anesthesiology at Children's.

In animal experiments, the membranes remained functional over multiple cycles. The size of the dose was controllable by the duration of the "on" pulse, and the rate of release remained steady, even 45 days after implantation.

Testing indicated that drug delivery could be turned on with only a 1 to 2 minute time lag before drug release, and turned off with a 5 to 10 minute time lag. The membranes remained mechanically stable under tensile and compression testing, indicating their durability, showed no toxicity to cells, and were not rejected by the animals' immune systems. They are activated by temperatures higher than normal body temperatures, so would not be affected by the heat of a patient's fever or inflammation.

"This novel approach to drug delivery using engineered 'smart' nanoparticles appears to overcome a number of limitations facing current methods of delivering medicines," says Alison Cole, Ph.D., who oversees anesthesia grants at the National Institutes of Health's National Institute of General Medical Sciences (NIGMS). "While some distance away from use in humans, this technology has the potential to provide precise, repeated, long-term, on-demand delivery of drugs for a number of medical applications, including the management of pain."


'/>"/>

Contact: James Newton
james.newton@childrens.harvard.edu
617-919-3112
Children's Hospital Boston
Source:Eurekalert

Related biology news :

1. U of M begins nations first clinical trial using T-reg cells from cord blood in leukemia treatment
2. Fever causing headaches for Aussie parents
3. Using evolution, UW team creates a template for many new therapeutic agents
4. Using green chemistry to deliver cutting-edge drugs
5. IGERT fellows to design biodevices using flexible electronics
6. Prediction of RNA pseudoknots using heuristic modeling with mapping and sequential folding
7. Computer program traces ancestry using anonymous DNA samples
8. Using nanotubes to detect and repair cracks in aircraft wings, other structures
9. Book on weeds and invasive plants discusses how to manage them using ecological approaches
10. Study shows housing development on the rise near national forests
11. Rare cancer-causing syndrome found, for the first time, in Singapore
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/23/2017)... and ITHACA, N.Y. , June 23, ... University, a leader in dairy research, today announced a ... to help reduce the chances that the global milk ... of this dairy project, Cornell University has become the ... the Food Supply Chain, a food safety initiative that ...
(Date:5/16/2017)... , May 16, 2017  Veratad Technologies, LLC ... of online age and identity verification solutions, announced today ... Identity Conference 2017, May 15 thru May 17, 2017, ... Building and International Trade Center. Identity ... globe and in today,s quickly evolving digital world, defining ...
(Date:4/24/2017)... Janice Kephart , former 9/11 ... Partners, LLP (IdSP) , today issues the following ... March 6, 2017 Executive Order: Protecting the ... be instilled with greater confidence, enabling the reactivation ... applications are suspended by until at least July ...
Breaking Biology News(10 mins):
(Date:8/22/2017)... Waxhaw, NC (PRWEB) , ... August 22, 2017 ... ... device company focused on the development and distribution of highly differentiated spinal implant ... Luke Maher brings 15 years of spinal device industry experience to ...
(Date:8/22/2017)... ... August 22, 2017 , ... One of ... the practice of opioid-dose sparing. Opioid-dose sparing refers to the reduction of opioid ... with non-steroidal anti-inflammatory drugs (NSAIDs). , The potential for new therapies to replace ...
(Date:8/22/2017)... MA (PRWEB) , ... August 22, 2017 , ... ... new service pipeline built upon patented KBioBox technology, the extended GUIDE-Seq ananlysis. KBioBox ... source GUIDE-Seq computation pipeline to be provide scientists with easy to understand reports, ...
(Date:8/21/2017)... (PRWEB) , ... August 20, 2017 , ... ... Journal of Biomedical Optics (JBO) starting 1 January 2018. The journal is published ... Biomedical Optics publishes papers on the use of modern optical technology for improved ...
Breaking Biology Technology: