Navigation Links
Using fish to illuminate the architecture of inherited disease

Durham, N.C. A research team led by scientists from the Duke University Medical Center has developed a way to simultaneously look at the effects of 125 mutations occurring on 14 different genes. They used zebrafish as a model to analyze the function of every known mutation in an inherited syndrome called BBS, Bardet-Biedl Syndrome.

Being able to analyze the functions and interactions of all mutations in a complex inherited disease could have implications for a broad range of disorders. The study found that, while mutations at one of at least 14 genes are responsible for the disorder, mutations elsewhere in the genome may modify the severity and diversity of the symptoms.

"The human genome project and new technologies can help us identify mutations in patients' genomes, but the challenge is how to interpret such variation and how to use it to improve the ability to predict what this means with respect to a patient's clinical presentation," said senior author Nicholas Katsanis, Ph.D., Jean and George Brumley Jr., M.D., Professor of Developmental Biology, Professor of Pediatrics and Cell Biology, and Director of the Duke Center for Human Disease Modeling. "Our work demonstrates that it is possible to develop functional bioassays using a vertebrate model that predicts whether a mutation has a role in a complex disease, like Bardet-Biedl syndrome, which we studied."

The study was published online during the week of May 24 in the Proceedings of the National Academy of Sciences.

BBS is an interesting disease to use as a study model because it involves a number of different traits that are highly variable among patients, said Katsanis, whose endowed professorship is in the Neonatal-Perinatal Research Institute at Duke. People with BBS may have retinopathy, obesity, mental retardation, more than the usual number of fingers or toes, and other distinct traits. BBS has become something of a workhorse for understanding variability of disease in humans, he said.

Simultaneously studying all the mutations in BBS led to some notable discoveries. Contrary to popular scientific belief, some mutations in BBS not only cause the loss of function of a protein, they actually influence the "good" remaining copies of the protein. In addition, the researchers saw that a subset of commonly occurring versions of some genes (called alleles) can be detrimental to protein function. The common alleles also can interact with strong, rare alleles to determine a trait.

"We speculate that such interactions are probably widespread across genetic disorders," Katsanis said. "Indeed, this might help settle a 100-year-old argument about common versus rare mutations and how they might underlie human genetic disorders. Perhaps not surprisingly, the answer is both, in a context-dependent fashion."

Katsanis is a world expert in ciliopathies such as BBS, in which the primary cilium (protrusion) of cells is abnormal and leads to a host of problems. About one child in 1,000 live births will have a ciliopathy, an incidence that is in the range of Down's syndrome, said Katsanis.

Katsanis said that the complex architecture of BBS probably is not unique to this disorder so the approach used by these researchers could improve understanding of a wide variety of human traits.

The researchers did in vivo tests in fish to learn whether they would develop defects if they had specific mutations and then validated their results with in vitro tests on cells in a lab dish to learn whether the aberrant activity in zebrafish embryos could be explained by defective behavior in mammalian cells.

Importantly, by comparing their data with previous clinical studies, they found their tools to be both highly sensitive and highly accurate, correctly predicting the effect of mutations at 98 percent, with a false-positive rate of less than 10 percent. "These numbers are quite critical, because they mean that we can use this approach to interpret information in the clinical setting; these percentages should be good enough for application in clinical labs," Katsanis said.

"A next step is to develop similar tools to let us evaluate various human genetic mutations within the context of their functions," Katsanis said. "Genotype must have a predictive value or it doesn't tell us much. Knowing all of the disease-related variants in a genome is only a starting point, because our work suggests that there is complexity that many do not yet appreciate in disease architecture."


Contact: Mary Jane Gore
Duke University Medical Center

Related biology news :

1. UCLA engineer gets $4 million from Department of Energy to convert CO2 to liquid fuel using electricity
2. Using remote sensing to track invasive trees
3. Using a pests chemical signals to control it
4. New plastic-like materials may say shhhh to hush disease-causing microbes
5. Project for sailing vessels to maneuver in ports using electric energy from wind
6. K-State professor using NSF award to study the impact of nitrogen deposition on global change
7. Scientists create artificial human skin with biomechanical properties using tissue engineering
8. Beetles stand out using Avatar tech
9. Cancer therapy using unique imaging, delivery system focus of NSF CAREER Award
10. Development of new anti-cancer gene therapy approach using lentiviral vectors
11. IU researchers target vascular disease linked to cancer-causing gene mutation
Post Your Comments:
(Date:11/18/2015)... , Nov. 18, 2015  As new scientific discoveries ... doctors and other healthcare providers face challenges in better ... and patients. In addition, as more children continue to ... patient,s adulthood and old age. John M. ... Children,s Hospital of Philadelphia (CHOP) . --> ...
(Date:11/17/2015)... November 17, 2015 Paris ... --> Paris from 17 th ... the biometrics innovation leader, has invented the first combined scanner ... the same scanning surface. Until now two different scanners were ... scanner can capture both on the same surface. This ...
(Date:11/17/2015)... 17, 2015  Vigilant Solutions announces today that Mr. ... of Directors. --> --> ... from the partnership at TPG Capital, one of the ... $140 Billion in revenue.  He founded and led TPG,s ... TPG companies, from 1997 to 2013.  In his first ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... CITY , Nov. 24, 2015 /PRNewswire/ - Aeterna ... request of IIROC on behalf of the Toronto Stock ... news release there are no corporate developments that would ... --> --> About ... . --> Aeterna Zentaris is ...
(Date:11/24/2015)... , November 24, 2015 ... market research report "Oligonucleotide Synthesis Market by Product & ... Gene Synthesis, Diagnostic, DNA, RNAi), End-User (Research, Pharmaceutical & ... by MarketsandMarkets, the market is expected to reach USD ... 2015, at a CAGR of 10.1% during the forecast ...
(Date:11/24/2015)... , ... November 24, 2015 , ... The Academy of ... Interest Group (SIG), MultiGP, also known as Multirotor Grand Prix, to represent the First–Person ... few years. Many AMA members have embraced this type of racing and several new ...
(Date:11/24/2015)... New York , November 24, 2015 ... to a recent market research report released by Transparency ... projected to expand at a CAGR of 17.5% during ... "Non-invasive Prenatal Testing Market - Global Industry Analysis, Size, ... estimates the global non-invasive prenatal testing market to reach ...
Breaking Biology Technology: