Navigation Links
Using cattails for insulation
Date:6/3/2013

Cattails have long been used for various purposes, like cleaning wastewater at sewage treatment plants, for detoxifying soils, as raw material for handcrafted wickerwork, as means of nutrition and, in traditional medicine, as a healing plant for various illnesses. Researchers at the Fraunhofer Institute for Building Physics IBP in Valley now want to use this gift of nature as a building material to wit, for the insulation of outer walls or reinforcement of plaster. Dr. Martin Krus, Head of Test Center at IBP, testifies as to the numerous positive, construction-related properties of this renewable raw material: "As one of nature's swamp plants, cattails are resistant to molds and are very well equipped to deal with moisture. The leaves of the plant have a fiber-reinforced supporting tissue that is filled up with a soft sponge tissue. Through this special construction, they are extraordinarily stable and possess an excellent insulating effect. This effect is also preserved in the finished products." The researcher already has such a product. Working in close consultation with cooperation partner typha technik Naturbaustoffe, he developed a magnesite-bound insulation panel made of Typha (Latin for "cattail") that already has a patent application pending. The panel features a low heat conductivity of 0.052 W/mK (watts per meter and Kelvin). It delivers excellent fireproofing, soundproofing and heat insulation, and is relatively permeable, but sufficiently tight so that, with most applications, one can dispense with a vapor control barrier. Most of all, the material can cope with high pressure parallel to the panel surface. The researcher and his team were able to validate the excellent values of the Typha panel following one-and-a-half years of measurements conducted in a traditional half-timbered home in Nuremberg. Its outer walls, as well as the timber work, were retrofitted with Typha. "The local craftsmen were enthused by this sustainable material," says Krus.

Lowland moors regenerated by Typha cultivation

Despite the numerous advantages of Typha, so far this natural building material has yet to be installed on a wide scale, or industrially exploited. "Cattails are highly prolific, especially in East Europe mainly Romania and Hungary. The wetland plant is not being cultivated in this part of the world, so it would have to be imported extra," as the engineer relates an important obstacle. In this respect, he indicated that there would be suitable cultivation areas in Germany. For example, dried out lowland moors that were used for agricultural purposes for decades could be revitalized by cultivating Typha. Scientists have already shown that this is possible through the "Cattail Cultivation in Lowland Moors" project sponsored by the Deutschen Bundesstiftung Umwelt DBU (German Federal Environment Foundation) and headed by the Chair for Landscape Ecology at the Munich University of Technology. "Drained lowland moors are a source of CO2 emissions. Each year, up to 40 million tons of carbon dioxide are released in Germany by draining," Krus affirms. By comparison: Automobile traffic in Germany causes an annual release of 105 million tons of CO2. This process could be stopped, though, by cultivating cattails. The depletion is reduced and many nutrients remain in the soil. At the same time, cattail surfaces offer habitats for rare plants and animals. "Therefore, typha cultivation also contributes to environmental protection," says the scientist.

There would be no impediment to high yields, since cattails are extremely fast-growing. Krus acknowledges that the harvested typha has excellent sales potential. "The plant can be processed easily," stressed the researcher. The leaves are detached horizontally into rod-like particles and then shortened at the correct length of around seven centimeters. Next, they are sprayed in a drum with environmentally-sound mineral adhesives and brought into a heated press. Currently, this process is performed manually. The expert and his colleagues have not yet found a manufacturer willing to undertake serial production of the panels. "Certainly the typha panel would be extraordinarily competitive if they were produced in a series production process," the scientist asserts enthusiastically.

Based on the numerous positive technical properties and the complete recyclability into the materials cycle, typha offers a truly diverse range of potential uses. Because of the high flexural rigidity and simultaneously low weight, the material can be used for roof construction or as a lightweight sandwich element for flooring and intermediate ceilings. It can also be used to design door leafs, window and door lintels; it is likewise possible to replace timber beams. The IBP researchers themselves realized plaster rein- forcement with seed parachutes by mixing the seed parachutes of the cattail plants into the lime plaster, to prevent the formation of fissures. "In principle, one could build an entire building out of Typha, if one excludes pipes, windows and the roofing," says Krus.


'/>"/>

Contact: Martin Krus
martin.krus@ibp.fraunhofer.de
49-802-464-3258
Fraunhofer-Gesellschaft
Source:Eurekalert

Related biology news :

1. Studies reveal structure of EV71, a virus causing childhood illnesses
2. BYU study: Using a gun in bear encounters doesnt make you safer
3. The shape of things to come: NIST probes the promise of nanomanufacturing using DNA origami
4. Beyond the microscope: Identifying specific cancers using molecular analysis
5. Cell therapy using patients own bone marrow may present option for heart disease
6. Using cell phones to detect harmful airborne substances
7. Disarming disease-causing bacteria
8. Notre Dame researchers using novel method to combat malaria drug resistance
9. High-resolution atomic imaging of specimens in liquid by TEM using graphene liquid cell
10. What is really causing the child obesity epidemic?
11. Better housing conditions for zebrafish could improve research results
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/22/2016)... 2016  The American College of Medical Genetics and Genomics ... as one of the fastest-growing trade shows during the ... Bellagio in Las Vegas . ... growth in each of the following categories: net square feet ... of attendees. The 2015 ACMG Annual Meeting was ranked 23 ...
(Date:6/16/2016)... June 16, 2016 The ... expected to reach USD 1.83 billion by 2024, ... Research, Inc. Technological proliferation and increasing demand in ... expected to drive the market growth. ... The development of advanced multimodal techniques for ...
(Date:6/3/2016)... 2016 Das DOTM ... Nepal hat ein 44 Millionen ... Kennzeichen, einschließlich Personalisierung, Registrierung und IT-Infrastruktur, an ... und Implementierung von Identitätsmanagementlösungen. Zahlreiche renommierte internationale ... teilgenommen, aber Decatur wurde als konformste und ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... June 23, 2016 Houston Methodist Willowbrook ... Cy-Fair Sports Association to serve as their official ... Houston Methodist Willowbrook will provide sponsorship support, athletic ... with association coaches, volunteers, athletes and families. ... Cy-Fair Sports Association and to bring Houston Methodist ...
(Date:6/23/2016)... , June 23, 2016  The Prostate Cancer Foundation (PCF) is ... treatments and faster cures for prostate cancer. Members of the Class of 2016 ... countries. Read More About the Class of 2016 PCF ... ... ...
(Date:6/23/2016)... 2016   EpiBiome , a precision microbiome engineering ... debt financing from Silicon Valley Bank (SVB). The financing ... advance its drug development efforts, as well as purchase ... "SVB has been an incredible strategic partner to us ... bank would provide," said Dr. Aeron Tynes Hammack ...
(Date:6/23/2016)... OTTAWA, ON (PRWEB) , ... June 23, 2016 , ... ... former DNA Technical Leader at the Arkansas State Crime Laboratory, has joined STACS DNA ... joining the STACS DNA team,” said Jocelyn Tremblay, President and COO of STACS DNA. ...
Breaking Biology Technology: