Navigation Links
Using bone marrow stem cells to treat critically ill patients on verge of respiratory failure
Date:8/11/2010

BETHESDA, Md., Aug. 11, 2010 - Researchers are reporting this week new study results they say provide further evidence of the therapeutic potential of stem cells derived from bone marrow for patients suffering from acute lung injury, one of the most common causes of respiratory failure in intensive care units.

Led by Drs. Michael A. Matthay and Jae W. Lee at the Cardiovascular Research Institute of the University of California, San Francisco, the team writes in a Journal of Biological Chemistry "Paper of the Week" that its experiments have revealed how a type of bone marrow stem cell bolsters damaged lung cells.

"We found that these stem cells secreted a significant quantity of a protein that restored the barrier that keeps fluid and other elements out of the lungs," said Lee, an associate professor of anesthesia at UCSF. "We're optimistic about the promise that future clinical trials may hold."

Scientists for decades have harnessed the natural regenerative properties of bone marrow to treat patients with blood-related diseases. And, of late, investigations into the potential of using bone marrow stem cells to treat damaged tissues have intensified.

There are two types of stem cells in bone marrow. One kind, hematopoietic stem cells, is tasked with producing red and white blood cells, depending upon the immune system's needs. The other, mesenchymal stem cells, is the focus of Matthay and Lee's work. While mesenchymal stem cells also support the production of blood cells, scientists today are quite interested in their ability to differentiate into cells that, when mature, develop into tissues throughout the body.

"Within the past several years, there has been an increased interest in understanding the biology of stem cells for clinical use as cell-based therapies," Lee said.

Acute lung injury is brought on by a number of conditions, such as pneumonia and sepsis, also known as blood poisoning. In some cases, acute lung injury develops into a more serious condition, known as acute respiratory distress syndrome, and results in insufficient oxygenation of blood and eventual organ failure.

Buried in the depths of healthy lung tissue, tiny groups of cells called alveoli stretch open to accommodate oxygen with each breath and then remove carbon dioxide during exhalation. Each alveolus is lined with a layer of epithelial cells that serve as a critical barrier -- keeping certain substances in and certain substances out -- so that the gas balance inside is appropriately maintained.

In contrast, inflammation due to injury or infection can make the border of epithelial cells become more porous than it should be. The increased permeability allows an often-deadly mix of substances, such as fluid and cells, to seep into and accumulate in the alveoli.

Despite extensive research on acute lung injury and acute respiratory distress syndrome, the mortality rate for patients remains high -- at about 40 percent, Lee said, and pharmacological therapies that reduce the severity of lung injury in experimental studies have not yet translated into effective clinical treatment options.

"Current treatments are primarily supportive care, and, therefore, innovative therapies are needed," explained co-author Arne P. Neyrinck.

The team decided to re-create the unhealthy lung conditions in the lab -- by culturing human alveolar cells and then chemically causing inflammation -- and to observe how the presence of bone marrow stem cells would change things.

"We then introduced mesenchymal stem cells without direct cell contact, and they churned out a lot of protein, called angiopoietin-1, which prevented the increase in lung epithelial permeability after the inflammatory injury," said Xiaohui Fang, the first author of the manuscript.

The authors say the findings are the first to demonstrate how mesenchymal stem cells revive the epithelial border of the alveoli, and they hope clinical trials will prove the therapy is a viable one for preventing respiratory failure in critically ill patients.


'/>"/>

Contact: Angela Hopp
ahopp@asbmb.org
301-634-7389
American Society for Biochemistry and Molecular Biology
Source:Eurekalert  

Related biology news :

1. Rutgers researchers assess severity of prostate cancers using magnetic resonance imaging
2. Health care using telephone and telemonitoring technology benefits heart failure patients
3. Cancer-causing bacterium targets tumor-suppressor protein
4. Noninvasive MR imaging of blood vessel growth in tumors using nanosized contrast agents
5. Researchers develop drug delivery system using nanoparticles triggered by electromagnetic field
6. Using bacteria in oil wells to convert oil to natural gas
7. Study of severe asthma using CT scans
8. Ph.D. thesis opens doors to obtaining chemical products and materials using biomass as raw material
9. Using fish to illuminate the architecture of inherited disease
10. UCLA engineer gets $4 million from Department of Energy to convert CO2 to liquid fuel using electricity
11. Using remote sensing to track invasive trees
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Using bone marrow stem cells to treat critically ill patients on verge of respiratory failure
(Date:1/18/2017)... 18, 2017 MedNet Solutions , ... the entire spectrum of clinical research, is proud ... year for the organization in terms of corporate ... eClinical products and services. The company,s exceptional achievements ... of iMedNet ™ ...
(Date:1/12/2017)... -- Trovagene, Inc. (NASDAQ: TROV ), a developer ... it has signed agreements with seven strategic partners across ... Middle East for commercialization of the Trovera™ ... of international distribution agreements for Trovagene,s CLIA based liquid ... The initial partners will introduce Trovagene,s liquid biopsy tests ...
(Date:1/12/2017)... , January 12, 2017 A new report by Allied Market ... the global biometric technology market is expected to generate revenue of $10.72 billion by ... Continue Reading ... Allied Market Research Logo ...      (Logo: http://photos.prnewswire.com/prnh/20140911/647229) ...
Breaking Biology News(10 mins):
(Date:1/20/2017)... January 20, 2017 Stock-Callers.com explores ... have influenced the most recent performances of select equities. ... RGLS ), Abeona Therapeutics Inc. (NASDAQ: ... TBPH ), and Sage Therapeutics Inc. (NASDAQ: ... Grand View Research, global Biotech market size is expected to reach $604.40 ...
(Date:1/19/2017)... , Jan 19, 2017 Research and ... by Profiling Technology, Biomolecules, Cancer Type, Application - Global Opportunity Analysis ... ... forecasts that the global market is projected to reach $15,737 million ... 13% from 2016 to 2022. Omic technologies segment ...
(Date:1/19/2017)... -- Research and Markets ... has announced the addition of the "Implantable ... report to their offering. Report Highlights: ... a detailed analysis on current and future market trends to identify the ... values as the base numbers Key market trends across ...
(Date:1/19/2017)... 2017  ArmaGen, Inc., today announced that it ... chief executive officer, as well as a member ... ArmaGen more than 17 years of executive management ... biotherapeutics and pharmaceuticals. "Mathias is ... and skillset necessary to lead ArmaGen to its ...
Breaking Biology Technology: