Navigation Links
Use less water, producing energy and fertilizer at the same time
Date:4/18/2012

Clean drinking water and basic sanitation are human rights. Yet almost 780 million of the world's population still have no access to drinking water and some 2.6 billion people live without sanitary facilities. Water, though, is also an important economic factor: Today, agricultural and manufacturing businesses already use up more than four fifths of this precious commodity. And the demand for water continues to rise. The Organization for Economic Cooperation and Development (OECD) is expecting that by 2050, global water consumption will have risen by more than half. Some 40 percent of the world's population will then be living in regions with extreme water shortages - 2.3 billion people more than today.

We have, to date, been wasteful in our use of this valuable resource. In Germany, each and every individual consumes around 120 liters of water per day - they drink only three. Another third is flushed down the toilet. But in some regions of the world, clean water is much too precious to be wasted transporting excrement. New technologies are allowing us to significantly reduce drinking water consumption, purify wastewater effectively and even recover biogas and fertilizer. The researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB and System and Innovation Research ISI have developed the solutions as part of the DEUS Decentral Urban Water Infrastructure Systems" project.

Treatment of rainwater

Not all water has to be drinking quality - for watering the garden or flushing the toilet, for instance. Using rainwater and treated wash water for personal needs pays off, especially in arid regions. Fraunhofer researchers have developed a modern water treatment plant for this very purpose. It produces germ-free, usable water that satisfies the requirements of the German Drinking Water Regulation (TVO). The treated rainwater can be used for showering, washing, flushing the toilet and watering the garden", explains Dr. Dieter Bryniok from the IGB in Stuttgart.

Vacuum sewage systems reduce water consumption

Vacuum sewage is a key building block. The concept drastically reduces water consumption. Vacuum toilets need only about 0.5 to 1 liter of water per flush. By comparison: Conventional toilets use between four and eight liters.

What's more, the investment and maintenance costs are lower than those for conventional sewage systems. Domestic wastewater is biologically purified in an anaerobic, high-performance membrane plant. The heart of the system, fully-mixed anaerobic bioreactors, treat the wastewater without aeration or oxygen and the organic constituents are converted into biogas, a mixture of methane and carbon dioxide.

The bioreactors are combined with rotation disk filters. The wastewater is forced through ceramic filter disks. The rotational movement of the ceramic membranes inhibits the formation of covering layers. So the filtration capacity is maintained over a prolonged period. The purified water drains into the filter plant's hollow shaft. The pores in the membrane range in size from 60 nanometers and 0.2 micrometers. All larger particles are routed into the bioreactors. Bacteria are also returned to the reactors, which breakdown the organic waste that has been filtered out. The recovered biogas provides power and heat. The entire plant works in the absence of air. The benefit: there's no bad odor.

Recovery of biogas and fertilizer

Another special feature of the disposal concept: As well as domestic wastewater, the wastewater purification plant can also process bio kitchen waste. Kitchens are simply equipped with a waste macerator, accommodated below the sink. The system is connected to the domestic wastewater pipes. As more and more organic waste gets into the wastewater, the biogas yield increases. Bio-waste and wastewater produce another by-product: fertilizer. Nitrogen and phosphorous are converted into ammonium and phosphorous salts and can be recovered through the applied membrane technology.

As Bryniok explains, The water management concept DEUS 21 benefits mainly those regions that still have no water infrastructure with sewage system and central clarification plant, or in which the old infrastructure can no longer be modified to meet the new challenges posed by climate change or de-population." The system is also ideally suited for export to water-scarce areas, because it can be adapted specifically to the needs of dry and semi-arid regions."

The latest China project

Fraunhofer researchers involved in the Advanced wastewater treatment in Guangzhou" project are currently working towards optimizing the DEUS technology in an industrial park in the City of Guangzhou, Guangdong Province to suit the conditions in China.

Further information can be found at: www.deus21.de


'/>"/>

Contact: Dieter Bryniok
dieter.bryniok@igb.fraunhofer.de
49-711-970-4211
Fraunhofer-Gesellschaft
Source:Eurekalert  

Related biology news :

1. Water, water everywhere - but is it essential to life?
2. Database of water, wastewater pipeline infrastructure systems to be launched Sept. 1
3. From a bucket of seawater, new understanding of the ocean
4. Water, water, everywhere… but is it safe to drink?
5. The green machine: Algae clean wastewater, convert to biodiesel
6. When worms stick together and swim on thin water, what happens and why does it matter?
7. Water, water everywhere focus of new sustainability project
8. Pitt researcher says simple polymer-based filter successfully cleans water, recovers oil in Gulf of Mexico tests
9. Polymer-based filter successfully cleans water, recovers oil in Gulf of Mexico test
10. Discovery may lead to safer drinking water, cheaper medicine: Queens University researchers
11. Inventor honored for tech improving access to clean water, healthcare, and business development in India
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Use less water, producing energy and fertilizer at the same time
(Date:6/7/2016)... , June 7, 2016  Syngrafii Inc. and ... business relationship that includes integrating Syngrafii,s patented LongPen™ ... project. This collaboration will result in greater convenience ... credit union, while maintaining existing document workflow and ... ...
(Date:6/1/2016)... Favorable Government Initiatives Coupled With ... Identification to Boost Global Biometrics System Market Through 2021  ... report, " Global Biometrics Market By Type, By ... 2011 - 2021", the global biometrics market is projected ... of growing security concerns across various end use sectors ...
(Date:5/9/2016)... 2016 Elevay is currently known ... freedom for high net worth professionals seeking travel for ... connected world, there is still no substitute for a ... sealing your deal with a firm handshake. This is ... advantage of citizenship via investment programs like those offered ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... PHILADELPHIA , June 27, 2016  Liquid ... today announced the funding of a Sponsored Research ... study circulating tumor cells (CTCs) from cancer patients.  ... changes in CTC levels correlate with clinical outcomes ... therapies. These data will then be employed to ...
(Date:6/24/2016)... DIEGO , June 24, 2016 ... more sensitively detects cancers susceptible to PARP inhibitors ... circulating tumor cells (CTCs). The new test has ... HRD-targeted therapeutics in multiple cancer types. ... targeting DNA damage response pathways, including PARP, ATM, ...
(Date:6/23/2016)... ... June 23, 2016 , ... Mosio, a ... eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with experienced clinical research ... by providing practical tips, tools, and strategies for clinical researchers. , “The landscape ...
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT ... Ontario biotechnology company, Propellon Therapeutics ... development and commercialization of a portfolio of first-in-class ... Epigenetic targets such as WDR5 represent an exciting ... significantly in precision medicine for cancer patients. Substantial ...
Breaking Biology Technology: