Navigation Links
Urban trees enhance water infiltration
Date:11/19/2008

MADISON, WI, NOVEMBER 17, 2008 Global land use patterns and increasing pressures on water resources demand creative urban stormwater management. Traditional stormwater management focuses on regulating the flow of runoff to waterways, but generally does little to restore the hydrologic cycle disrupted by extensive pavement and compacted urban soils with low permeability. The lack of infiltration opportunities affects groundwater recharge and has negative repercussions on water quality downstream. Researchers know that urban forests, like rural forest land, can play a pivotal role in stormwater mitigation, but developing approaches that exploit the ability of trees to handle stormwater is difficult in highly built city cores or in urban sprawl where asphalt can be the dominant cover feature.

A group of researchers from Virginia Tech, Cornell, and University of California at Davis have been investigating innovative ways to maximize the potential of trees to address stormwater in a series of studies supported by the U.S. Forest Service's Urban and Community Forestry Grants Program. The results of the studies were published in the November-December issue of the Journal of Environmental Quality.

Virginia Tech scientists used two container experiments to establish that urban tree roots have the potential to penetrate compacted subsoils and increase infiltration rates in reservoirs being used to store stormwater. In one study, roots of both black oak and red maple trees penetrated clay loam soil compacted to 1.6 g cm-3, increasing infiltration rates by an average of 153%.

In another experiment, researchers created a small-scale version of the stormwater best management practice (BMP) under study by the three universities. This BMP includes a below-pavement stormwater detention reservoir constructed of structural soil. Structural soils are engineered mixes designed to both support pavement loads and simultaneously provide rooting space for trees. In this study, green ash trees increased the average infiltration rate by 27 fold compared with unplanted controls. In the experiment, a structural soil reservoir (CUSoil, Amereq Corp., New York) was separated from compacted clay loam subsoil (1.6 g cm‑3) by a woven geotextile in 102-liter containers. The roots of ash trees planted in the structural soil penetrated both the geotextile and the subsoil within two years.

"Although we observed many roots penetrating the geotextile, roots really proliferated where there was a slight tear in the fabric," said Susan Day, the project's lead investigator. "Manipulating root penetration through these separation geotextiles could potentially play a large role in bioretention system function and design, especially since the potentially saturated soils beneath detention reservoirs may have reduced soil strength, increasing opportunities for root growth by some species."

Structural soil reservoirs may thus provide new opportunities for meeting engineering, environmental, and greenspace management needs in urban areas. Further research is needed on the effects of tree roots and detention time on water quality in structural soils. Monitoring continues at four demonstration sites around the country and updated information is posted as it becomes available at www.cnr.vt.edu/urbanforestry/stormwater.


'/>"/>

Contact: Sara Uttech
suttech@agronomy.org
608-268-4948
American Society of Agronomy
Source:Eurekalert

Related biology news :

1. Networks of small habitat patches can preserve urban biodiversity
2. UC Riverside scientist to explore how vegetation affects urban heat islands
3. Study: urban black bears live fast, die young
4. UMCES-led research team quantifies nutrient pollution reductions from urban stream restoration
5. Some migratory birds cant find success in urban areas, study finds
6. Influenza vaccine causes weaker immune response for children of rural Gabon than in semi-urban areas
7. Diversity of trees in Ecuadors Amazon rainforest defies simple explanation
8. Shade trees can protect coffee crops
9. Extinction most likely for rare trees in the Amazon rainforest
10. Vine invasion? UWM ecologist looks at coexistence of trees and lianas
11. Ancient oak trees help reduce global warming
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... 11, 2017 Research and Markets has announced ... report to their offering. ... global eye tracking market to grow at a CAGR of 30.37% ... Tracking Market 2017-2021, has been prepared based on an in-depth market ... landscape and its growth prospects over the coming years. The report ...
(Date:4/5/2017)...  The Allen Institute for Cell Science today announces ... portal and dynamic digital window into the human cell. ... application of deep learning to create predictive models of ... a growing suite of powerful tools. The Allen Cell ... publicly available resources created and shared by the Allen ...
(Date:4/3/2017)... , April 3, 2017  Data ... precision engineering platform, detected a statistically significant ... product prior to treatment and objective response ... the potential to predict whether cancer patients ... to treatment, as well as to improve ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... ... of a complex biological network, a depiction of a system of linkages and ... Dmitry Korkin, PhD, associate professor of computer science at Worcester Polytechnic Institute (WPI) ...
(Date:10/12/2017)... ... October 12, 2017 , ... AMRI, a ... biotechnology industries to improve patient outcomes and quality of life, will now be ... are being attributed to new regulatory requirements for all new drug products, including ...
(Date:10/11/2017)... ... October 11, 2017 , ... ComplianceOnline’s Medical Device Summit is ... and 8th June 2018 in San Francisco, CA. The Summit brings together current and ... distinguished CEOs, board directors and government officials from around the world to address key ...
(Date:10/11/2017)... ... October 11, 2017 , ... A new ... rates in frozen and fresh in vitro fertilization (IVF) transfer cycles. ... to IVF success. , After comparing the results from the fresh and frozen ...
Breaking Biology Technology: