Navigation Links
Up from the depths: How bacteria capture carbon in the 'twilight zone'
Date:9/1/2011

WALNUT CREEK, Calif.Understanding the flow and processing of carbon in the world's oceans, which cover 70 percent of Earth's surface, is central to understanding global climate cycles, with many questions remaining unanswered. Between 200 and 1,000 meters below the ocean surface exists a "twilight zone" where insufficient sunlight penetrates for microorganisms to perform photosynthesis. Despite this, it is known that microbes resident at these depths capture carbon dioxide that they then use to form cellular structures and carry out necessary metabolic reactions so that they can survive and reproduce. Details are now emerging about a microbial metabolic pathway that helps solve the mystery of how certain bacteria do this in the dark ocean. These research results, which are enabling a better understanding of what happens to the carbon that is fixed in the oceans every year, were published by a team of researchers, including those from the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), in the September 2, 2011 edition of Science.

Carbon fixation in the dark ocean has so far been attributed primarily to the Archaea, single-celled organisms that often live in extreme environmental conditions. In this region of the ocean, the bacteria living there were thought to rely on organic compounds for both energy and carbon. According to DOE JGI collaborator Ramunas Stepanauskas, Director of the Bigelow Laboratory Single Cell Genomics Center and senior author of the Science paper, "Previous oceanographic models suggested that Archaea do not adequately account for the amount of carbon that is being fixed in the dark ocean. Our study discovered specific types of Bacteria rather than Archaea, and their likely energy sources that may be responsible for this major, unaccounted component of the dark ocean carbon cycle."

To overcome the challenge that had hindered studies of deep ocean microbes, which have not yet been cultivated in the laboratory, researchers employed innovative single-cell genomics techniques, where DOE JGI's Tanja Woyke and Alexander Sczyrba, Bigelow Laboratory's Ramunas Stepanauskas and their teams are among the pioneers. Study co-author Woyke explained, "After we sequenced the genomes of single cells that were isolated by our colleagues at Bigelow, it was possible to verify the predominant bacterial lineages capable of trapping carbon in this deep underwater region. "This study represents a pristine example for the use of single cell genome sequencing to decipher the metabolic capabilities of uncultured natural microbial consortia, providing a powerful complement to metagenomics."

Stepanauskas attributed the success of the project to the combined efforts of the DOE JGI, the Bigelow Laboratory, the Monterey Bay Aquarium Research Institute, the University of Vienna, and MIT. "This is the first application of a single-cell genomic approach to the deep ocean, one of the largest and least known biomes on the planet," emphasized David Kirchman, Harrington Professor of Marine Biosciences at the University of Delaware. "The paper radically changes our view about how microbes gain energy and flourish in the oceans."


'/>"/>

Contact: David Gilbert
degilbert@lbl.gov
925-296-5643
DOE/Joint Genome Institute
Source:Eurekalert

Related biology news :

1. Scientists reengineer antibiotic to overcome dangerous antibiotic-resistant bacteria
2. New CU-Boulder study reveals bacteria from dog feces in outdoor air of urbanized air
3. U of Minnesota researchers discover a natural food preservative that kills food-borne bacteria
4. University of Houston professor co-authors PNAS paper on how bacteria move
5. New target found for nitric oxides attack on salmonella bacteria
6. Bacterial attack strategy uses special delivery of toxic proteins
7. UCLA study shows bacteria use Batman-like grappling hooks to slingshot on surfaces
8. New contrast agents detect bacterial infections with high sensitivity and specificity
9. Purdue biologists identify new strategy used by bacteria during infection
10. Drug shield helps target antibiotic resistant bacteria
11. When viruses infect bacteria
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/6/2017)... , April 6, 2017 Forecasts ... ANPR, Document Readers, by End-Use (Transportation & Logistics, Government ... Oil, Gas & Fossil Generation Facility, Nuclear Power), Industrial, ... Other) Are you looking for a definitive ... ...
(Date:4/5/2017)... , April 5, 2017 Today HYPR ... that the server component of the HYPR platform is ... providing the end-to-end security architecture that empowers biometric authentication ... HYPR has already secured over 15 million users across ... manufacturers of connected home product suites and physical access ...
(Date:4/4/2017)... , April 4, 2017   EyeLock LLC ... announced that the United States Patent and Trademark Office ... broadly covers the linking of an iris image with ... transaction) and represents the company,s 45 th issued ... patent is very timely given the multi-modal biometric capabilities ...
Breaking Biology News(10 mins):
(Date:6/27/2017)... ... 2017 , ... Indiana-based Xylogenics announced today the release of ... The efficiencies created by the newest strain design will have an immediate ... wherein individual production plants are planning to invest upwards of $350 million annually ...
(Date:6/26/2017)... Va (PRWEB) , ... June 26, 2017 , ... The ... the use of health IT to create efficiencies in healthcare information exchange and a ... Donald W. Rucker, MD, head of the federal Office of the National Coordinator for ...
(Date:6/23/2017)... CARDIFF, UK (PRWEB) , ... June 23, 2017 , ... ... Brian Lula, president of Physik Instrumente USA, have been selected as this year’s recipients ... . , The two have been invited along with other honorees to accept their ...
(Date:6/22/2017)... (PRWEB) , ... June 21, 2017 , ... ... regional office in North Carolina, and engages Timothy Reinhardt to manage the new ... quality leadership at Pfizer Inc, with his most recent role as the Director ...
Breaking Biology Technology: