Navigation Links
Unravelling new complexity in the genome
Date:8/13/2007

A major surprise emerging from genome sequencing projects is that humans have a comparable number of protein-coding genes as significantly less complex organisms such as the minute nematode worm Caenorhabditis elegans. Clearly something other than gene count is behind the genetic differences between simpler and more complex life forms.

Increased functional and cellular complexity can be explained, in large part, by how genes and the products of genes are regulated. A University of Toronto-led study published in the latest issue of Genome Biology reveals that a step in gene expression (referred to as alternative splicing) is more highly regulated in a cell and tissue-specific manner than previously appreciated and much of this additional regulation occurs in the nervous system. The alternative splicing step allows a single gene to specify multiple protein products by processing the RNA transcripts made from genes (which are translated to make protein).

We are finding that a significant number of genes operating in the same biological processes and pathways are regulated by alternative splicing differently in nervous system tissues compared to other mammalian tissues, says lead investigator Professor Benjamin Blencowe of the Banting and Best Department of Medical Research and Centre for Cellular and Biomolecular Research (CCBR) at the University of Toronto

According to Blencowe, it is particularly interesting that many of the genes have important and specific functions in the nervous system, including roles associated with memory and learning. However, in most cases the investigators working on these genes were not aware that their favorite genes are regulated at the level of splicing. Blencowe believes that the data his group has generated provides a valuable basis for understanding molecular mechanisms by which genes can function differently in different parts of the body.

Blencowe attributes these new findings in part to the power of a new tool that he, together with his colleagues including Profs. Brendan Frey (Department of Electrical and Computer Engineering) and Timothy Hughes (Banting and Best, CCBR), developed a few years ago. This tool, which comprises tailored designed microarrays or gene chips and computer algorithms, allows the simultaneous measurement of thousands of alternative splicing events in cells and tissues. Until recently researchers studied splicing regulation on a gene by gene basis. Now we can obtain a picture of what is happening on a global scale, which provides a fascinating new perspective on how genes are regulated, Blencowe explains.

A challenge now is to figure out how the alternative splicing process is regulated in a cell and tissue-specific manner. In their new paper in Genome Biology, Dr. Yoseph Barash, a postdoctoral fellow working jointly with Blencowe and Frey, has provided what is likely part of the answer. By applying computational methods to the gene chip data generated by Matthew Fagnani (an MSc student) and other members of the Blencowe lab, Barash has uncovered what appears to be part of a regulatory code that controls alternative splicing patterns in the brain.

One outcome of these new studies is that the alternative splicing process appears to provide a largely separate layer of gene regulation that works in parallel with other important steps in gene regulation. The number of genes and coordinated regulatory events involved in specifying cell and tissue type characteristics appear to be considerably more extensive than appreciated in previous studies, says Blencowe. These findings also have implications for understanding human diseases such as cancers, since we can anticipate a more extensive role for altered regulation of splicing events that similarly went unnoticed due to the lack of the appropriate technology allowing their detection.


'/>"/>
Contact: Benjamin Blencowe
b.blencowe@utoronto.ca
416-978-3016
University of Toronto
Source:Eurekalert

Related biology news :

1. Genome of deadly amoeba shows surprising complexity, evidence of lateral gene transfer
2. NYU, Rockefeller researchers find complexity of regulation by microRNA genes
3. How E. coli bacterium generates simplicity from complexity
4. Evolution of irreducible complexity explained
5. Complexity constrains evolution of human brain genes
6. Man and mouse share genome structures
7. Affymetrix Unveils Plans to Double Plant and Animal Genome Microarray Offering
8. Whole genome fine map of rice completed
9. Genome-wide mouse study yields link to human leukemia
10. Study finds more than one-third of human genome regulated by RNA
11. A bacterial genome reveals new targets to combat infectious disease
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/21/2016)... British Columbia , June 21, 2016 /PRNewswire/ ... appointed to the new role of principal product ... been named the director of customer development. Both ... NuData,s chief technical officer. The moves reflect NuData,s ... teams in response to high customer demand and ...
(Date:6/9/2016)... , June 9, 2016 ... deploy Teleste,s video security solution to ensure the safety of ... during the major tournament Teleste, an ... systems and services, announced today that its video security solution ... to back up public safety across the country. The ...
(Date:6/2/2016)... LONDON , June 2, 2016 ... Systems, Manned Platforms, Unmanned Systems, Physical Infrastructure, Support & ... intelligence provider visiongain offers comprehensive analysis of ... that this market will generate revenues of $17.98 billion ... Systems acquired DVTEL Inc, a leader in software and ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... , June 27, 2016  Sequenom, Inc. (NASDAQ: ... enabling healthier lives through the development of innovative products ... the United States denied its ... the claims of Sequenom,s U.S. Patent No. 6,258,540 (",540 ... criteria established by the Supreme Court,s Mayo Collaborative Services ...
(Date:6/27/2016)... -- Liquid Biotech USA , Inc. ... Research Agreement with The University of Pennsylvania ("PENN") ... patients.  The funding will be used to assess ... outcomes in cancer patients undergoing a variety of ... to support the design of a therapeutic, decision-making ...
(Date:6/24/2016)... ... 24, 2016 , ... Researchers at the Universita Politecnica delle Marche in Ancona ... or pleural mesothelioma. Their findings are the subject of a new article on the ... are signposts in the blood, lung fluid or tissue of mesothelioma patients that can ...
(Date:6/23/2016)... 2016 A person commits a crime, and the ... track the criminal down. An outbreak of foodborne ... Administration (FDA) uses DNA evidence to track down the bacteria ... far-fetched? It,s not. The FDA has increasingly used a complex, ... foodborne illnesses. Put as simply as possible, whole genome sequencing ...
Breaking Biology Technology: