Navigation Links
Unraveling biological networks
Date:3/5/2012

A new approach to disentangling the complexities of biological networks, such as the way in which proteins interact in our body's cells has been developed by researchers in China. The team's algorithm could allow biologists and biomedical researchers to unravel new clues about how cells work and what goes awry with such networks in various diseases, such as Alzheimer's disease and cancer.

We find networks everywhere in technology, in nature, in our bodies. They are ubiquitous in countless fields of research from electronic circuitry to social networks from transportation systems to biological systems. Researchers have demonstrated that although networks may superficially be very disparate in nature they nevertheless share many global properties, such as "small world" and "scale free" characteristics. This means that understanding one kind of network can help us understand another.

However, to dig deeper still into the universal characteristics of networks requires us to understand the basic structural elements present in a particular - the so-called network "motifs". Motifs are patterns of interconnections between the nodes in a network, whether transistors, neurons Facebook users, or in molecular biology, proteins. Motifs that occur in significantly larger numbers in real networks than in randomised networks can be used to characterise local features of even the most complex networks. With high-throughput analytical techniques, molecular biologists are beginning to uncover network motifs in protein systems, and likewise in metabolism, the brain, the spread of pathogens and many other areas of interest.

Computer scientists Guimin Qin and Lin Gao of Xidian University in Shaanxi, China, have devised an efficient algorithm for detecting motifs in protein networks. The algorithm first searches for specific non-tree-like sub-structures in a network that are not so commonly found in random networks. It then classifies these sub-structures and clusters them hierarchically to reveal the presence of recurring motifs in the network. The team has applied the algorithm to a network of protein-protein interaction (PPI) for the well-studied bacterium Escherichia coli and the yeast Saccharomyces cerevisiae.

"Our experimental results show that the algorithm can efficiently discover motifs, which are consistent with current biology knowledge," the team says. Importantly, however, the approach has also revealed several novel motifs previously unrecognised. "Our algorithm can detect several consensus motifs with a given size, which may help biologists go further into cellular process," the team adds.


'/>"/>

Contact: Lin Gao
lgao@mail.xidian.edu.cn
Inderscience Publishers
Source:Eurekalert

Related biology news :

1. Brain structure provides key to unraveling function of bizarre dinosaur crests
2. Physics, math provide clues to unraveling cancer
3. March of Dimes awards $250,000 prize to scientists unraveling the causes of muscular dystrophy
4. New book offers practical advice for unraveling the genetics of complex human diseases
5. Tel Aviv University President Co-authors Important Paper Unraveling the Effect of Spatial Organization on Intracellular Chemistry
6. Unraveling Alzheimers: Simple small molecules could untangle complex disease
7. Unraveling a new regulator of cystic fibrosis
8. Unraveling Batten disease
9. Biological sand filters, a practical approach to combat poverty and inequality
10. Argonne scientists peer into heart of compound that may detect chemical, biological weapons
11. GEN reports on novel tools for deciphering biological networks
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/8/2016)... Dec. 8, 2016 Market Research Future published a half ... global Mobile Biometric Security and Service Market is expected to grow ... Market Highlights: ... , Mobile Biometric Security and ... the increasing need of authentication and security from unwanted cyber threats. ...
(Date:12/7/2016)... According to a new market research report "Emotion Detection and Recognition ... Service, Application Area, End User, And Region - Global Forecast to 2021", published ... in 2016 to USD 36.07 Billion by 2021, at a Compound Annual Growth ... ... MarketsandMarkets Logo ...
(Date:12/7/2016)... 2016   Avanade is helping Williams Martini ... in history, exploit biometric data in order to critically ... the competitive edge against their rivals after their impressive, ... Avanade has worked with Williams during the 2016 season ... (heart rate, breathing rate, temperature and peak acceleration) for ...
Breaking Biology News(10 mins):
(Date:1/18/2017)...   Parent Project Muscular Dystrophy (PPMD) , a ... muscular dystrophy (Duchenne) , today announced a $600,000 grant ... Technology (NJIT) and Talem Technologies (Talem) as part of ... to assist people living with Duchenne. PPMD is funding ... embedded computer, software, a force sensor and a motor ...
(Date:1/18/2017)... Malden, MA (PRWEB) , ... January 18, 2017 ... ... announced today that Dr. Dante Leven successfully implanted SpineFrontier’s A-CIFT™ Solofuse-P™. The operation ... Medical Center in Valley Stream, NY. The procedure was an anterior cervical discectomy ...
(Date:1/18/2017)... ... January 18, 2017 , ... Announced in December ... Institutes (MII). U.S. Secretary of Commerce Penny Pritzker has announced the award of ... of Defense has announced the award of a new Advanced Regenerative Manufacturing Institute ...
(Date:1/18/2017)... ... ... Researchers from a new study are stating that if levels of the blood ... this indicates there is still remaining prostate cancer cells that are more likely to come ... always been an indicator of whether a man’s prostate cancer is growing or not,” ...
Breaking Biology Technology: