Navigation Links
Unraveling biological networks
Date:3/5/2012

A new approach to disentangling the complexities of biological networks, such as the way in which proteins interact in our body's cells has been developed by researchers in China. The team's algorithm could allow biologists and biomedical researchers to unravel new clues about how cells work and what goes awry with such networks in various diseases, such as Alzheimer's disease and cancer.

We find networks everywhere in technology, in nature, in our bodies. They are ubiquitous in countless fields of research from electronic circuitry to social networks from transportation systems to biological systems. Researchers have demonstrated that although networks may superficially be very disparate in nature they nevertheless share many global properties, such as "small world" and "scale free" characteristics. This means that understanding one kind of network can help us understand another.

However, to dig deeper still into the universal characteristics of networks requires us to understand the basic structural elements present in a particular - the so-called network "motifs". Motifs are patterns of interconnections between the nodes in a network, whether transistors, neurons Facebook users, or in molecular biology, proteins. Motifs that occur in significantly larger numbers in real networks than in randomised networks can be used to characterise local features of even the most complex networks. With high-throughput analytical techniques, molecular biologists are beginning to uncover network motifs in protein systems, and likewise in metabolism, the brain, the spread of pathogens and many other areas of interest.

Computer scientists Guimin Qin and Lin Gao of Xidian University in Shaanxi, China, have devised an efficient algorithm for detecting motifs in protein networks. The algorithm first searches for specific non-tree-like sub-structures in a network that are not so commonly found in random networks. It then classifies these sub-structures and clusters them hierarchically to reveal the presence of recurring motifs in the network. The team has applied the algorithm to a network of protein-protein interaction (PPI) for the well-studied bacterium Escherichia coli and the yeast Saccharomyces cerevisiae.

"Our experimental results show that the algorithm can efficiently discover motifs, which are consistent with current biology knowledge," the team says. Importantly, however, the approach has also revealed several novel motifs previously unrecognised. "Our algorithm can detect several consensus motifs with a given size, which may help biologists go further into cellular process," the team adds.


'/>"/>

Contact: Lin Gao
lgao@mail.xidian.edu.cn
Inderscience Publishers
Source:Eurekalert

Related biology news :

1. Brain structure provides key to unraveling function of bizarre dinosaur crests
2. Physics, math provide clues to unraveling cancer
3. March of Dimes awards $250,000 prize to scientists unraveling the causes of muscular dystrophy
4. New book offers practical advice for unraveling the genetics of complex human diseases
5. Tel Aviv University President Co-authors Important Paper Unraveling the Effect of Spatial Organization on Intracellular Chemistry
6. Unraveling Alzheimers: Simple small molecules could untangle complex disease
7. Unraveling a new regulator of cystic fibrosis
8. Unraveling Batten disease
9. Biological sand filters, a practical approach to combat poverty and inequality
10. Argonne scientists peer into heart of compound that may detect chemical, biological weapons
11. GEN reports on novel tools for deciphering biological networks
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/5/2017)... Allen Institute for Cell Science today announces the launch ... dynamic digital window into the human cell. The website ... deep learning to create predictive models of cell organization, ... suite of powerful tools. The Allen Cell Explorer will ... resources created and shared by the Allen Institute for ...
(Date:4/4/2017)...   EyeLock LLC , a leader of iris-based ... Patent and Trademark Office (USPTO) has issued U.S. Patent ... an iris image with a face image acquired in ... 45 th issued patent. "The ... the multi-modal biometric capabilities that have recently come to ...
(Date:3/30/2017)... HONG KONG , March 30, 2017 ... developed a system for three-dimensional (3D) fingerprint identification by adopting ground ... technology into a new realm of speed and accuracy for use ... applications at an affordable cost. ... ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... ... of a complex biological network, a depiction of a system of linkages and ... Dmitry Korkin, PhD, associate professor of computer science at Worcester Polytechnic Institute (WPI) ...
(Date:10/12/2017)... , ... October 12, 2017 , ... ... Vilnius, Lithuania, announced today that they have entered into a multiyear collaboration to ... provide CRISPR researchers with additional tools for gene editing across all applications. , ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... with the addition of its newest module, US Hemostats & Sealants. , SmartTRAK’s ... hemostats, absorbable hemostats, fibrin sealants, synthetic sealants and biologic sealants used in surgical ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... analysis platform specifically designed for life science researchers to analyze and interpret ... Rosalind Franklin, who made a major contribution to the discovery of the ...
Breaking Biology Technology: