Navigation Links
Unraveling Batten disease

Waste management is a big issue anywhere, but at the cellular level it can be a matter of life and death. A Weizmann Institute study, published in the Journal of Cell Biology, has revealed what causes a molecular waste container in the cell to overflow in Batten disease, a rare but fatal neurodegenerative disorder that begins in childhood. The findings may form the basis for a therapy for this disorder.

In Batten disease, an insoluble yellow pigment accumulates in the brain's neurons, causing these cells to degenerate and ultimately die. Patients gradually become disabled, losing their vision and motor skills and suffering mental impairment; they rarely survive beyond their early twenties. It's been known for a while that the disorder is caused by a mutation in the gene referred to as CLN3, but the role of this gene in the cell was unknown. This role has now been discovered in the Weizmann Institute study, explaining the molecular dysfunction in Batten disease.

The research was conducted in the laboratory of Prof. Jeffrey Gerst of the Molecular Genetics Department by Rachel Kama and postdoctoral fellow Dr. Vydehi Kanneganti, in collaboration with Prof. Christian Ungermann of the University of Osnabrueck in Germany. All the studies were performed in yeast: The yeast equivalent of the mammalian CLN3 gene has been conserved almost intact in the course of evolution, making them ideal models for study. In fact, so similar are the yeast and the mammalian genes that when the researchers replaced a missing copy of the yeast gene with a working copy of mammalian CLN3, normal functioning of the yeast cell was restored.

The experiments showed that the yeast equivalent of CLN3 is involved in moving proteins about the cell the scientific term is "protein trafficking." The gene activates an enzyme of the kinase family, which, in turn, launches a series of molecular events regulating the trafficking. When the yeast CLN3 is mutated, this trafficking is disrupted. As a result, certain proteins accumulate abnormally in the lysosome, the cell's waste-recycling machine, instead of being transported to another destination. At some point the lysosome is filled beyond capacity; it then interferes with molecular signaling and other vital processes in the neuron, eventually killing the cell.

A great deal of research must still be performed before this finding benefits humans, but the clarification of the CLN3 function is precisely what might help develop a new therapy. Replacing the defective CLN3 in all the brain's neurons is a daunting challenge, but replacing its function for example, by activating the relevant kinase by means of a drug should be much more feasible.


Contact: Yivsam Azgad
Weizmann Institute of Science

Related biology news :

1. Unraveling a new regulator of cystic fibrosis
2. Unraveling Alzheimers: Simple small molecules could untangle complex disease
3. Tel Aviv University President Co-authors Important Paper Unraveling the Effect of Spatial Organization on Intracellular Chemistry
4. New book offers practical advice for unraveling the genetics of complex human diseases
5. March of Dimes awards $250,000 prize to scientists unraveling the causes of muscular dystrophy
6. Physics, math provide clues to unraveling cancer
7. Brain structure provides key to unraveling function of bizarre dinosaur crests
8. OHSU Doernbecher Childrens Hospital conducts second phase of landmark Batten study
9. Mutation in gene associated with rare eye disease also contributes to bladder cancer growth
10. Scientists discover new drug candidates for cystic fibrosis and other diseases
11. The Michael J. Fox Foundation awards nearly $200,000 to develop novel drugs for Parkinsons disease
Post Your Comments:
(Date:11/17/2015)... , November 17, 2015 ... au 19 novembre  2015.  --> Paris ... --> DERMALOG, le leader de l,innovation biométrique, ... la fois passeports et empreintes sur la même surface ... les passeports et l,autre pour les empreintes digitales. Désormais, ...
(Date:11/16/2015)... , Nov 16, 2015  Synaptics Inc. (NASDAQ: ... interface solutions, today announced expansion of its TDDI ... touch controller and display driver integration (TDDI) ... smartphones. These new TDDI products add to the ... resolution), TD4302 (WQHD resolution), and TD4322 (FHD resolution) ...
(Date:11/12/2015)... --  Growing need for low-cost, easy to use, ... the way for use of biochemical sensors for ... clinical, agricultural, environmental, food and defense applications. Presently, ... applications, however, their adoption is increasing in agricultural, ... on improving product quality and growing need to ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... , November 24, 2015 ... market research report "Oligonucleotide Synthesis Market by Product & ... Gene Synthesis, Diagnostic, DNA, RNAi), End-User (Research, Pharmaceutical & ... by MarketsandMarkets, the market is expected to reach USD ... 2015, at a CAGR of 10.1% during the forecast ...
(Date:11/24/2015)... Nov. 24, 2015  Tikcro Technologies Ltd. (OTCQB: TIKRF) today announced that ... 2015 at 11:00 a.m. Israel time, at the ... Yigal Allon Street, 36 th Floor, Tel Aviv, Israel ... Paneth and Izhak Tamir to the Board of Directors; ... external directors; , approval of an amendment to certain terms of ...
(Date:11/24/2015)... ... November 24, 2015 , ... ... Technologies, Inc., on being named to Deloitte's 2015 Technology Fast 500 list of ... OrthoAccel manufactures AcceleDent®, a FDA-cleared, Class II medical device that speeds up orthodontic ...
(Date:11/24/2015)... , November 24, 2015 , ... a European healthcare fund ... companies will work closely together in identifying European breakthrough technologies ... need. The collaboration is underpinned by a significant investment by ... is the first investment by Bristol-Myers Squibb in a European ...
Breaking Biology Technology: