Navigation Links
Unprecedented Arctic ozone loss occurred last winter
Date:10/3/2011

A NASA-led study has documented an unprecedented depletion of the Earth's protective ozone layer above the Arctic last winter and spring that was caused by an unusually prolonged period of extremely low temperatures in the stratosphere. University of Toronto physicist Kaley Walker was part of the international team behind the study to be published online Sunday, October 2 in Nature.

The researchers found the amount of ozone destroyed in the Arctic in 2011 was comparable to that seen in some years in the Antarctic, where an ozone "hole" has formed each spring since the mid 1980s. The stratospheric ozone layer, extending from about 15 to 35 kilometres above the surface, protects life on Earth from the sun's harmful ultraviolet rays.

The scientists found that at some altitudes, the cold period in the Arctic lasted more than 30 days longer in 2011 than in any previously studied Arctic winter, leading to the unprecedented ozone loss. Further studies are needed to determine what factors caused the cold period to last so long.

The Antarctic ozone hole forms when extremely cold conditions, common in the winter Antarctic stratosphere, trigger reactions that convert atmospheric chlorine from human-produced chemicals into forms that destroy ozone. While the same ozone-loss processes occur each winter in the Arctic, the generally warmer stratospheric conditions there limit the area affected and the time frame during which the chemical reactions occur. This means there is generally far less ozone loss in most years in the Arctic than in the Antarctic.

To investigate the 2011 Arctic ozone loss, Walker and scientists from 18 other institutions in nine countries (United States, Germany, The Netherlands, Russia, Finland, Denmark, Japan and Spain) analyzed a comprehensive set of measurements. These included daily global observations of trace gases and clouds from NASA's Aura and CALIPSO spacecraft; ozone measured by instrumented balloons; meteorological data and atmospheric models. The University of Toronto team contributed to the balloon-borne data with measurements from Eureka, Nunavut, located at 80 N (1,100 km from the North Pole). The team was participating in a Canadian Space Agency-funded project making springtime measurements to verify the performance of a Canadian satellite called the Atmospheric Chemistry Experiment (ACE).

"In the 2010-11 Arctic winter, we did not have temperatures that were lower than in the previous cold Arctic winters," said Walker. "What was different about this year was that the temperatures were low enough to generate ozone-depleting forms of chlorine for a much longer period of time. Arctic ozone loss events such as those observed this year could become more frequent if winter Arctic stratospheric temperatures decrease in future as the Earth's climate changes.

The 2011 Arctic ozone loss occurred over an area considerably smaller than that of the Antarctic ozone holes. This is because the Arctic polar vortex, a persistent large-scale cyclone within which the ozone loss takes place, was about 40 percent smaller than a typical Antarctic vortex. While smaller and shorter-lived than its Antarctic counterpart, the Arctic polar vortex is more mobile, often moving over densely-populated northern regions. Decreases in overhead ozone lead to increases in surface ultraviolet radiation, which are known to have adverse effects on humans and other life forms.

Although the total amount of Arctic ozone measured was much more than twice that typically seen in an Antarctic spring, the amount destroyed was comparable to that in some previous Antarctic ozone holes. This is because ozone levels at the beginning of Arctic winter are typically much greater than those at the beginning of Antarctic winter.

The scientists noted that without the 1989 Montreal Protocol, an international treaty limiting production of ozone-depleting substances, chlorine levels already would be so high that an Arctic ozone hole would form every spring. The long atmospheric lifetimes of ozone-depleting chemicals already in the atmosphere mean that Antarctic ozone holes, and the possibility of future severe Arctic ozone loss, will continue for decades.

"Each of the balloon and satellite measurements included in this study were absolutely necessary to understand the ozone depletion we observed this past winter," Walker said. "To be able to predict future Arctic ozone loss reliably in a changing climate, it is crucial that we maintain our atmospheric measurement capabilities."


'/>"/>

Contact: Kim Luke
kim.luke@utoronto.ca
416-978-4352
University of Toronto
Source:Eurekalert

Related biology news :

1. Rutgers, UMDNJ research provides unprecedented insight into fighting viral infections
2. An unprecedented role reversal: Ground beetle larvae lure amphibians and prey upon them
3. CSHL scientists show in unprecedented detail how cortical nerve cells form synapses with neighbors
4. 20th-century warming in Lake Tanganyika is unprecedented
5. Twentieth-century warming in Lake Tanganyika is unprecedented
6. Brown geologists show unprecedented warming in Lake Tanganyika
7. Forest epidemic is unprecedented phenomenon, still getting worse
8. New tissue-hugging implant maps heart electrical activity in unprecedented detail
9. Behavior of single protein observed in unprecedented detail by Stanford chemists
10. Athletes, spectators faced unprecedented air pollution at 2008 Olympic Games
11. New pollution radar developed to provide unprecedented picture of urban smog
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/28/2017)... 28, 2017 The report "Video ... Monitors, Servers, Storage Devices), Software (Video Analytics, VMS), and ... Global Forecast to 2022", published by MarketsandMarkets, the market ... is projected to reach USD 75.64 Billion by 2022, ... The base year considered for the study is 2016 ...
(Date:3/23/2017)... PUNE, India , March 23, 2017 The report ... Equipment, Touchless Biometric), Industry, and Geography - Global Forecast to 2022", published by ... growing at a CAGR of 29.63% between 2017 and 2022. ... ... Logo ...
(Date:3/22/2017)... LIVERMORE, Calif. , March 21, 2017 ... recognition analytics company serving law enforcement agencies, announced today ... Sheridan as director of public safety business development. ... of diversified law enforcement experience, including a focus on ... Vigilant. In his most recent position, Mr. Sheridan served ...
Breaking Biology News(10 mins):
(Date:7/13/2017)... ... July 13, 2017 , ... Thousands of pilots from across the country will ... Championships (Nats). Pilots come to Muncie to compete in various categories of model flying ... that participate in world championships. , RC Pylon (July 14-21): One of the most ...
(Date:7/13/2017)... ... July 13, 2017 , ... ... in Orthopedics, has announced today the completion of a major transaction with Eurazeo ... organic and external growth. The alliance fuels In’Tech Medical’s service offerings while leveraging ...
(Date:7/13/2017)... Frederick, Maryalnd (PRWEB) , ... July 13, 2017 ... ... Frederick Innovative Technology Center, Inc. (FITCI), has experienced robust growth in the past ... the public/private nonprofit has launched several Entrepreneurial Acceleration Programs and expanded its board ...
(Date:7/13/2017)... ... July 13, 2017 , ... Trinity Sterile, Inc., a fast-growing ... has chosen The Copley Consulting Group to implement and deploy the Infor CloudSuite ... internal and backend operations to streamline efficiencies to meet the increasing demand for ...
Breaking Biology Technology: