Navigation Links
Unprecedented, man-made trends in ocean's acidity
Date:1/22/2012

Nearly one-third of CO2 emissions due to human activities enters the world's oceans. By reacting with seawater, CO2 increases the water's acidity, which may significantly reduce the calcification rate of such marine organisms as corals and mollusks. The extent to which human activities have raised the surface level of acidity, however, has been difficult to detect on regional scales because it varies naturally from one season and one year to the next, and between regions, and direct observations go back only 30 years.

Combining computer modeling with observations, an international team of scientists concluded that anthropogenic CO2 emissions over the last 100 to 200 years have already raised ocean acidity far beyond the range of natural variations. The study is published in the January 22 online issue of Nature Climate Change.

The team of climate modelers, marine conservationists, ocean chemists, biologists and ecologists, led by Tobias Friedrich and Axel Timmermann at the International Pacific Research Center, University of Hawaii at Manoa, came to their conclusions by using Earth system models that simulate climate and ocean conditions 21,000 years back in time, to the Last Glacial Maximum, and forward in time to the end of the 21st century. They studied in their models changes in the saturation level of aragonite (a form of calcium carbonate) typically used to measure of ocean acidification. As acidity of seawater rises, the saturation level of aragonite drops. Their models captured well the current observed seasonal and annual variations in this quantity in several key coral reef regions.

Today's levels of aragonite saturation in these locations have already dropped five times below the pre-industrial range of natural variability. For example, if the yearly cycle in aragonite saturation varied between 4.7 and 4.8, it varies now between 4.2 and 4.3, which based on another recent study may translate into a decrease in overall calcification rates of corals and other aragonite shell-forming organisms by 15%. Given the continued human use of fossil fuels, the saturation levels will drop further, potentially reducing calcification rates of some marine organisms by more than 40% of their pre-industrial values within the next 90 years.

"Any significant drop below the minimum level of aragonite to which the organisms have been exposed to for thousands of years and have successfully adapted will very likely stress them and their associated ecosystems," says lead author Postdoctoral Fellow Tobias Friedrich.

"In some regions, the man-made rate of change in ocean acidity since the Industrial Revolution is hundred times greater than the natural rate of change between the Last Glacial Maximum and pre-industrial times," emphasizes Friedrich. "When Earth started to warm 17,000 years ago, terminating the last glacial period, atmospheric CO2 levels rose from 190 parts per million (ppm) to 280 ppm over 6,000 years. Marine ecosystems had ample time to adjust. Now, for a similar rise in CO2 concentration to the present level of 392 ppm, the adjustment time is reduced to only 100 200 years."

On a global scale, coral reefs are currently found in places where open-ocean aragonite saturation reaches levels of 3.5 or higher. Such conditions exist today in about 50% of the ocean mostly in the tropics. By end of the 21st century this fraction is projected to be less than 5%. The Hawaiian Islands, which sit just on the northern edge of the tropics, will be one of the first to feel the impact.

The study suggests that some regions, such as the eastern tropical Pacific, will be less stressed than others because greater underlying natural variability of seawater acidity helps to buffer anthropogenic changes. The aragonite saturation in the Caribbean and the western Equatorial Pacific, both biodiversity hotspots, shows very little natural variability, making these regions particularly vulnerable to human-induced ocean acidification.

"Our results suggest that severe reductions are likely to occur in coral reef diversity, structural complexity and resilience by the middle of this century," says co-author Professor Axel Timmermann."


'/>"/>

Contact: Gisela Speidel
gspeidel@hawaii.edu
University of Hawaii ‑ SOEST
Source:Eurekalert  

Related biology news :

1. UCLA study shows man-made fat may limit damage to heart attack victims
2. Planted, unplanted man-made wetlands are similar at year 15, and function as effective carbon sinks
3. Man-made global warming started with ancient hunters
4. Going green on hold: Man-made activities can affect blue haze, worlds weather
5. IEEE-USA/NAS Hollywood Forum describes engineering trends for entertainment industry professionals
6. Recent trends show recessions effect on US advanced technology exports
7. Atlantic herring population trends linked to egg predation by haddock
8. Researchers present new trends in HIV cure research, call for proactive outreach programs to prevent HIV transmission in injecting drug users, and demand increased commitments to improving maternal and child health
9. Ecological scorecards to help assess status, trends in North Americas marine protected areas
10. Reviews of microbial gene language published in special issue of Trends in Microbiology
11. Technology guide: Principles -- applications -- trends
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Unprecedented, man-made trends in ocean's acidity
(Date:12/7/2016)... Israel , December 7, 2016 BioCatch ... the expansion of its patent portfolio, which grew to over 40 granted ... , , ... its recently filed patent entitled " System, Device, and Method ... technology that enables device makers to forego costly hardware components needed to ...
(Date:12/6/2016)... N.C. , Dec. 6, 2016 Valencell ... announced today it has seen a third consecutive year ... biometric sensor technology in 2016 with a 360 percent ... last year. This increase was driven by sales of ... as robust interest in its technology for hearables for ...
(Date:12/2/2016)... Dec. 1, 2016   SoftServe , a ... BioLock , an electrocardiogram (ECG) biosensor analysis system ... key IoT asset. The smart system ensures device-to-device ... steering wheel and mobile devices to easily ,recognize, ... As vehicle technology advances, so too must ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... (PRWEB) , ... December 08, 2016 , ... ... light to control cells — optogenetics — is key to exciting advances in ... the art, spatially patterned light projected via free-space optics stimulates small, transparent organisms ...
(Date:12/8/2016)... BARCELONA, Spain , Dec. 8, 2016  Anaconda ... on the development of the next generation neuro-thrombectomy system ... the appointment of Tudor G. Jovin, MD to join ... to serve as a strategic network of scientific and ... progresses the development of the ANCD BRAIN ® ...
(Date:12/8/2016)... ... December 08, 2016 , ... This CAST literature review ... biotech crops. The authors focus on the economic effects in countries that are major ... new biotech crops and the resultant risk of low level presence (LLP) puts large ...
(Date:12/8/2016)... HOWELL, N.J. , Dec. 8, 2016 /PRNewswire/ ... aquatic augmentation remediation technologies and selected NewTechBio,s NT-MAX ... , a microbial based beneficial bacteria, in conjunction ... Inc., to correct deficiencies with National Pollutant Discharge ... basin 281-8H has experienced a steady history of ...
Breaking Biology Technology: