Navigation Links
University of Toronto study demonstrates impact of adversity on early life development
Date:10/25/2012

TORONTO, ON It is time to put the nature versus nurture debate to rest and embrace growing evidence that it is the interaction between biology and environment in early life that influences human development, according to a series of studies recently published in a special edition of the Proceedings of the National Academy of Sciences (PNAS).

"Biologists used to think that our differences are pre-programmed in our genes, while psychologists argued that babies are born with a blank slate and their experience writes on it to shape them into the adults they become. Instead, the important question to be asking is, 'How is our experience in early life getting embedded in our biology?'" says University of Toronto behavioural geneticist Marla Sokolowski. She is co-editor of the PNAS special edition titled "Biological Embedding of Early Social Adversity: From Fruit Flies to Kindergarteners" along with professors Tom Boyce (University of British Columbia) and Gene Robinson (University of Illinois).

Sokolowski, who is a University Professor in the Department of Ecology & Evolutionary Biology (EEB), the inaugural academic director of Uof T's Fraser Mustard Institute for Human Development and co-director of the Experience-based Brain and Biological Development Program (EBBD) at the Canadian Institute for Advanced Research (CIFAR) says that relatively little is known about the gene-environment interplay that underlies the impact of early life adversity on adult health and behaviour.

In one of the studies in the series, Sokolowski and her colleagues found that chronic food deprivation and lack of adequate nutrition in the early life of the fruit fly Drosophila melanogaster had significant impact on adult behaviour and quality of life. Fruit flies are especially useful for genetic studies because they share a surprising number of qualities with humans, are inexpensive to care for and reproduce rapidly, allowing for several generations to be studied in just a few months.

The researchers examined two types of fruit flies with variants in the foraging gene (for) known as rovers and sitters because of their different behaviours in the presence of food.

When well fed as larvae, rover adults exhibit darting exploration into open areas as they move about in search of food, while sitters show little of this behaviour. When nutritionally deprived as larvae, both rover and sitter adults exhibit darting exploration. Further, the sitters that faced nutritional adversity in early life displayed a reduction in their ability to reproduce. Rovers exhibited no effect on their reproductive fitness.

"The foraging gene makes an enzyme called PKG, which is found in the fly as well as in most other organisms, including humans. When faced with a nutritionally adverse environment while growing up, the levels of the enzyme dropped in flies," says Sokolowski. "This told us that the foraging gene listens to its environment." Transgenic manipulations of PKG levels altered darting exploration in well fed but not nutritionally deprived flies.

The research team included James Burns, a CIFAR junior fellow in Sokolowski's lab, U of T EEB professor Locke Rowe and EEB post-doctoral fellow Nicolas Svetec, as well as colleagues from the Universitiy of British Columbia and the Universit Paris-Sud. The findings are reported in the paper "Chronic food deprivation in early life affects adult exploratory and fitness traits, in the October 16, 2012 issue of the Proceedings of the Nataional Academy of Science.

The papers in the volume are authored largely by CIFAR researchers, and comprise a multidisciplinary collection of research into fields from molecular genetics, evolutionary biology and neuroscience, to social and behavioural science, epidemiology and social policy as well as the emerging field of epigenetics, which investigates deviations in a gene's ability to produce its products (e.g. RNA, protein) caused by mechanisms other than changes in an organism's underlying DNA sequence.

The collection of papers in the volume sets out an emerging new field of the developmental science of childhood adversity, and changes conventional understanding of the early years of human life.

"This is the first volume of collected research to provide a substantial and comprehensive picture of the interaction between experience and biology in the early years," says Sokolowski.

"Developmental neuroscience is extraordinarily intricate and complex, and so by approaching this question from multiple angles we're able to reveal a convergence on a number of themes and set a clearer direction for future research."


'/>"/>
Contact: Sean Bettam
s.bettam@utoronto.ca
416-946-7950
University of Toronto
Source:Eurekalert  

Related biology news :

1. University of Houston study shows BP oil spill hurt marshes, but recovery possible
2. University of Alberta led research may have discovered how memories are encoded in our brains
3. BGI, University of Helsinki and Wuhan University sign a MOU concerning cooperation on genomics
4. Marshall University study may lead to new treatments for prostate cancer
5. University leads £6 million EU project to tackle obesity
6. A University of Tennessee professors hypothesis may be game changer for evolutionary theory
7. Life expectancy may affect when you get married, divorced, have kids: Queens University study
8. University of Toronto biologists predict extinction for organisms with poor quality genes
9. University of Minnesota invention helps advance reliability of alternative energy
10. Israel names Tel Aviv Universitys Renewable Energy Center a Center of Research Excellence
11. University of Minnesota startup offers game-changing energy solutions that reduce CO2 emissions
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
University of Toronto study demonstrates impact of adversity on early life development
(Date:11/21/2016)... , Nov. 21, 2016   Neurotechnology ... object recognition technologies, today announced that the MegaMatcher ... cards was submitted for the NIST Minutiae ... passed all the mandatory steps of the evaluation ... is a continuing test of fingerprint templates used ...
(Date:11/17/2016)... 17, 2016 Global Market Watch: Primarily ... Banks, Population-Based Banks and Academics) market is to witness a ... Biobanks shows the highest Compounded Annual Growth Rate (CAGR) of ... during the analysis period 2014-2020. North America ... followed by Europe at 9.56% respectively. ...
(Date:11/16/2016)... Nov. 16, 2016 Sensory Inc ., ... security for consumer electronics, and VeriTran , ... retail industry, today announced a global partnership that ... to authenticate users of mobile banking and mobile ... software which requires no specialized biometric scanners, ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... N.J. , Dec. 8, 2016  Soligenix, ... late-stage biopharmaceutical company focused on developing and commercializing ... an unmet medical need, announced today the long-term ... with SGX942 (dusquetide), a first-in-class Innate Defense Regulator ... in head and neck cancer patients undergoing chemoradiation ...
(Date:12/8/2016)... 2016  HedgePath Pharmaceuticals, Inc. (OTCQX: HPPI), a ... plans to commercialize innovative therapeutics for patients with ... were approved for trading on the OTCQX U.S. ... OTCQX, effective today, under the ticker symbol "HPPI." ... companies must meet high financial standards, follow best ...
(Date:12/8/2016)... Dec. 8, 2016 Eutilex Co. Ltd. today ... (US $18.9M) Series A financing. This financing round included ... Venture and SNU Bio Angel. This new funding brings ... KRW (US $27.7M) since its founding in 2015. ... the development and commercialization of its immuno-oncology programs, expand ...
(Date:12/8/2016)... SAN DIEGO , Dec. 8, 2016 /PRNewswire/ ... ), a leading commercial provider of clinically actionable ... cancer patients, announces that clinical data featuring its ... concordance to tissue biopsy for the detection of ... The results from research sponsored by Sara Cannon ...
Breaking Biology Technology: