Navigation Links
University of Pennsylvania researchers zero in on the tiniest members in the war on cancer
Date:12/13/2007

PHILADELPHIA - Researchers from the University of Pennsylvania and Johns Hopkins University have uncovered another reason why one of the most commonly activated proteins in cancer is so dangerous. As reported in Nature Genetics this week, the Myc protein can stop the production of at least 13 microRNAs, small pieces of nucleic acid that help control which genes are turned on and off.

Furthermore, in several instances, re-introducing repressed miRNAs into Myc-containing cancer cells suppressed tumor growth in mice, raising the possibility that a gene-therapy approach could be an effective therapy for treating certain cancers.

Andrei Thomas-Tikhonenko, an associate professor in the Department of Pathobiology in Penns School of Veterinary Medicine, and a research team led by Joshua Mendell, assistant professor at the McKusick-Nathans Institute of Genetic Medicine at Johns Hopkins, analyzed more than 300 miRNAs in both human and mouse lymphoma cells.

Mendells team had previously found that Myc could turn on one particular group of growth-promoting miRNAs called the miR-17-92 cluster in lymphoma cells. In those cells that had high amounts of Myc protein, the researchers found significant changes in the quantities of at least 13 miRNAs.

"The surprising aspect, considering our miR-17-92 results," Tsung-Cheng Chang and Duonan Yu, lead co-authors on the study, wrote, "is that lots of Myc turns everything off, not on."

When they looked closer at the DNA of the lymphoma cells, the team also found that Myc was directly attaching to the DNA at the miRNA genes.

"This was further evidence that the decrease in miRNA levels was directly due to the action of Myc," says Chang said.

"This study expands our understanding of how Myc acts as such a potent cancer-promoting protein," Mendell said. "We already knew that it can directly regulate thousands of genes. Through its repertoire of miRNAs, Myc likely influences the expression of thousands of additional genes. Activation of Myc therefore profoundly changes the program of genes that are expressed in cancer cells."

"Still, we needed to determine whether any of these Myc-regulated microRNAs played a direct role in cancer," Thomas-Tikhonenko said.

The Penn team individually reintroduced several of the repressed miRNAs into mouse lymphomas that also had high levels of Myc and measured the effect on lymphoma progression in animals. They found that at least five of the miRNAs could stop cancer growth.

"While this result was not entirely surprising, we had no idea that cancer suppression by microRNAs could be so powerful," Thomas-Tikhonenko said.

Mendell also notes that RNA-based therapies have had some success in animal models, and researchers might potentially find a wide range of miRNAs that can stop cancers in their tracks.


'/>"/>

Contact: Jordan Reese
jreese@upenn.edu
215-573-6604
University of Pennsylvania
Source:Eurekalert

Related biology news :

1. A study by the MUHC and McGill University opens a new door to understanding cancer
2. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
3. University of Oregon researcher finds that on waters surface, nitric acid is not so tough
4. Bioengineers at University of Pennsylvania devise nanoscale system to measure cellular forces
5. Binghamton University researchers investigate evolving malaria resistance
6. Antioxidant to retard wrinkles discovered by Hebrew University researcher
7. Society for General Microbiology 161st Meeting, University of Edinburgh
8. Boston University biomedical engineers find chink in bacterias armor
9. KAUST and American University in Cairo to collaborate on research and academic development
10. UNH becomes first university in nation to use landfill gas as primary energy source
11. University of Minnesota study refutes belief that black men have more aggressive prostate cancer
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/27/2016)... WEST CHESTER, Ohio , Jan. 27, 2016 /PRNewswire/ ... services supplier based in West Chester, Ohio ... and their award winning service staff, based in ... Track,s technical capacity and ability to provide modifications, installations ... John Dovalina , CEO of PLUS, commented, "PLUS ...
(Date:1/21/2016)... --> ... report "Emotion Detection and Recognition Market by Technology (Bio-Sensors, NLP, ... Voice Recognition and Others), Services, Application Areas, End ... published by MarketsandMarkets, the global Emotion Detection and ... Billion by 2020, at a CAGR of 31.9%, ...
(Date:1/15/2016)... Jan. 15, 2016 Recent publicized breaches in ... find new ways to ensure data security and user ... and Android that ties a user,s ... it into a hardware authorization token. Customer service agents ... fingerprint on their KodeKey enabled device to verify their ...
Breaking Biology News(10 mins):
(Date:2/4/2016)... 2016 - New FDA action date of ... FDA action date of July 22, 2016   ... 22, 2016   - Lifitegrast has ... indicated for the treatment of signs and symptoms of dry eye ... potential to be the only product approved in the U.S. in the past decade indicated ...
(Date:2/4/2016)... 4, 2016  CytoSorbents Corporation (NASDAQ: CTSO ... flagship CytoSorb® blood filter to treat deadly inflammation ... world, announced that CEO Dr. Phillip Chan ... Capital Group,s 2016 Disruptive Growth & Healthcare Conference, ... Conference Presentation Details: Where: Convene ...
(Date:2/4/2016)... BEIJING , Feb. 4, 2016 Sinovac ... ), a leading provider of biopharmaceutical products in ... committee of its board of directors received on February ... 3, 2016, from a consortium comprised of PKU V-Ming ... Sinobioway Biomedicine Co., Ltd., CICC Qianhai Development ( ...
(Date:2/3/2016)... 2016  Discovery Laboratories, Inc. (NASDAQ: DSCO ... KL4 surfactant therapies for respiratory diseases, today announced ... inducement award as a component of employment compensation ... President and Chief Executive Officer.  The award was ... 1, 2016 and granted as an inducement material ...
Breaking Biology Technology: