Navigation Links
University of Missouri researcher study provides insight into how corn makes hormones
Date:3/7/2011

Columbia, MO -- It's a corn plant only a geneticist could love, but an MU researcher has found a way to help scientists love it.

Instead of the characteristic fan-like tassel that waves majestically atop the stalk, this corn plant sends up a cartoonishly skinny stick. Its ears -- if it makes them at all -- resemble small, chubby, lime-green caterpillars, not exactly something you want to dig your teeth into. To top it off, the corn plant stands only about three feet tall, at full maturity, and has few leaves.

"A farmer would say this corn plant looks terrible," said Paula McSteen, associate professor of biological sciences at MU and lead investigator of the study. "For me, the idea is that if the plant looks that terrible, the missing gene must control a really important process."

By using a positional cloning technique and molecular markers, McSteen and her colleagues were able to pinpoint the absent gene, which they named vanishing tassel2 or vt2. The gene encodes an enzyme, called tryptophan aminotransferase, important for making auxin, an important growth hormone in plants.

"We know that auxin is critical for determining where cell division and expansion are going to happen to make new organs," said McSteen. "Where auxin is made tells the plant where organs, such as ears, tassels, and leaves, are going to grow."

The researchers confirmed that the corn plants lacking the vt2 gene do produce low levels of the hormone.

The study is part of a larger effort by McSteen to understand the role auxin plays in organogenesis -- the formation of specific organs in plants -- and to shed light on the largely unknown molecular mechanism that fuels auxin's production in plants. In previous work, McSteen discovered another gene, sparse inflorescence1 or spi1, also involved in making auxin in corn.

Previous genetic research in the model plant Arabidopsis suggested that genes similar to both spi1 and vt2 act independently of each other to produce the hormone. However, corn plants missing both genes do not have less auxin than plants missing only the newly discovered vt2 gene.

"The lack of an additive effect suggests the spi1 and vt2 genes work together, instead of independently, to make auxin in corn," McSteen said. "This is the first evidence these genes are in the same biosynthesis pathway."

Results from the study shed new light on how auxin is synthesized in plants, which despite over a century of research, remains largely unknown.


'/>"/>

Contact: Melody Kroll
KrollMM@missouri.edu
573-884-4144
University of Missouri-Columbia
Source:Eurekalert

Related biology news :

1. Rice University establishes National Corrosion Center
2. Case Western Reserve University researchers track Chernobyl fallout
3. Case Western Reserve University project ties soil conservation and river management together
4. Brown University and Women & Infants Hospital expand national childrens study to Bristol County
5. NIH selects Case Western Reserve University to participate in National Childrens Study
6. US Senate confirms Clemson University engineering Dean Esin Gulari to National Science Board
7. University professor stresses links between US Navy sonar and whale strandings
8. Scent on demand: Hebrew University scientists enhance the scent of flowers
9. University success at national engineering awards
10. University of Leicester professor adds new perspective to rainforest debate
11. Providing toilets, safe water is top route to reducing world poverty: UN University
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/16/2016)... global wearable medical device market, in terms of value, is projected ... in 2016, at a CAGR of 18.0% during the forecast period. ... Growth in ... launch of a growing number of smartphone-based healthcare apps compatible with ... increasing focus on physical fitness. Furthermore, growing trend ...
(Date:12/15/2016)... ... Markets has announced the addition of the "Global Military Biometrics Market ... the global military biometrics market to grow at a CAGR of 7.5% ... based on an in-depth market analysis with inputs from industry experts. The ... years. The report also includes a discussion of the key vendors operating ...
(Date:12/15/2016)... "Increase in mobile transactions is driving the growth of ... expected to grow from USD 4.03 billion in 2015 ... of 29.3% between 2016 and 2022. The market is ... smart devices, government initiatives, and increasing penetration of e-commerce ... to grow at a high rate during the forecast ...
Breaking Biology News(10 mins):
(Date:1/12/2017)... ... January 12, 2017 , ... After her brain cancer ... gave her only a few months to live. Now a paper publishing January ... Rosendahl’s disease and increased both the quantity and quality of her life: Adding ...
(Date:1/12/2017)... Pune, India , January 12, 2017 A new ... Type and End Users - Global Opportunity Analysis and Industry Forecast, 2014-2022," projects that ... $2,921 million in 2015, growing at a CAGR of 15.07% during the forecast period. ... ... Market Research Logo ...
(Date:1/11/2017)... AURORA, Colo. (PRWEB) , ... January 11, 2017 ... ... in the journal Clinical Cancer Research show early promise of the investigational anti-cancer ... progressed despite a median 5 previous treatment regimens. Twenty-seven percent of these heavily ...
(Date:1/11/2017)... , ... January 11, 2017 , ... ... society for optics and photonics , are commending the U.S. Congress and President ... signing Friday by the President of the American Innovation and Competitiveness Act (AICA). ...
Breaking Biology Technology: