Navigation Links
University of Missouri researcher study provides insight into how corn makes hormones
Date:3/7/2011

Columbia, MO -- It's a corn plant only a geneticist could love, but an MU researcher has found a way to help scientists love it.

Instead of the characteristic fan-like tassel that waves majestically atop the stalk, this corn plant sends up a cartoonishly skinny stick. Its ears -- if it makes them at all -- resemble small, chubby, lime-green caterpillars, not exactly something you want to dig your teeth into. To top it off, the corn plant stands only about three feet tall, at full maturity, and has few leaves.

"A farmer would say this corn plant looks terrible," said Paula McSteen, associate professor of biological sciences at MU and lead investigator of the study. "For me, the idea is that if the plant looks that terrible, the missing gene must control a really important process."

By using a positional cloning technique and molecular markers, McSteen and her colleagues were able to pinpoint the absent gene, which they named vanishing tassel2 or vt2. The gene encodes an enzyme, called tryptophan aminotransferase, important for making auxin, an important growth hormone in plants.

"We know that auxin is critical for determining where cell division and expansion are going to happen to make new organs," said McSteen. "Where auxin is made tells the plant where organs, such as ears, tassels, and leaves, are going to grow."

The researchers confirmed that the corn plants lacking the vt2 gene do produce low levels of the hormone.

The study is part of a larger effort by McSteen to understand the role auxin plays in organogenesis -- the formation of specific organs in plants -- and to shed light on the largely unknown molecular mechanism that fuels auxin's production in plants. In previous work, McSteen discovered another gene, sparse inflorescence1 or spi1, also involved in making auxin in corn.

Previous genetic research in the model plant Arabidopsis suggested that genes similar to both spi1 and vt2 act independently of each other to produce the hormone. However, corn plants missing both genes do not have less auxin than plants missing only the newly discovered vt2 gene.

"The lack of an additive effect suggests the spi1 and vt2 genes work together, instead of independently, to make auxin in corn," McSteen said. "This is the first evidence these genes are in the same biosynthesis pathway."

Results from the study shed new light on how auxin is synthesized in plants, which despite over a century of research, remains largely unknown.


'/>"/>

Contact: Melody Kroll
KrollMM@missouri.edu
573-884-4144
University of Missouri-Columbia
Source:Eurekalert

Related biology news :

1. Rice University establishes National Corrosion Center
2. Case Western Reserve University researchers track Chernobyl fallout
3. Case Western Reserve University project ties soil conservation and river management together
4. Brown University and Women & Infants Hospital expand national childrens study to Bristol County
5. NIH selects Case Western Reserve University to participate in National Childrens Study
6. US Senate confirms Clemson University engineering Dean Esin Gulari to National Science Board
7. University professor stresses links between US Navy sonar and whale strandings
8. Scent on demand: Hebrew University scientists enhance the scent of flowers
9. University success at national engineering awards
10. University of Leicester professor adds new perspective to rainforest debate
11. Providing toilets, safe water is top route to reducing world poverty: UN University
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/16/2017)... 2017  Veratad Technologies, LLC ( www.veratad.com ), an ... identity verification solutions, announced today they will participate as ... 15 thru May 17, 2017, in Washington ... Center. Identity impacts the lives of ... quickly evolving digital world, defining identity is critical to ...
(Date:4/19/2017)... York , April 19, 2017 ... as its vendor landscape is marked by the presence ... market is however held by five major players - ... Together these companies accounted for nearly 61% of the ... the leading companies in the global military biometrics market ...
(Date:4/13/2017)... 2017 According to a new market research report ... Identity Administration, and Authorization), Service, Authentication Type, Deployment Mode, Vertical, and Region ... expected to grow from USD 14.30 Billion in 2017 to USD 31.75 ... ... MarketsandMarkets Logo ...
Breaking Biology News(10 mins):
(Date:5/24/2017)... ... May 24, 2017 , ... ... as treasurer for the Mid-Atlantic chapter of the Healthcare Businesswomen’s Association ... , The HBA Mid-Atlantic chapter board meets in person once each quarter and ...
(Date:5/24/2017)... (PRWEB) , ... May 24, 2017 , ... ... systems are increasingly being developed with Wi-Fi connectivity to reduce the amount of ... room to room. In addition, compact mobile devices including infusion pumps, heart and ...
(Date:5/23/2017)... ... May 23, 2017 , ... ... source of human cardiovascular cells for research and the development of cardiac ... possible to generate large numbers of cardiomyocytes (hPSC-CMs). Due to varying differentiation ...
(Date:5/23/2017)... ... , ... Vortex Biosciences , provider of circulating tumor cell (CTC) capture ... using Vortex microfluidic technology ” in Nature Precision Oncology on May 8th. The ... and Dr. Matthew Rettig at the University of California, Los Angeles. The publication describes ...
Breaking Biology Technology: