Navigation Links
University of Miami engineer designs stretchable electronics with a twist
Date:1/21/2009

CORAL GABLES, FL (January 21, 2008)- Jizhou Song, a professor in the University of Miami College of Engineering and his collaborators Professor John Rogers, at the University of Illinois and Professor Yonggang Huang, at Northwestern University have developed a new design for stretchable electronics that can be wrapped around complex shapes, without a reduction in electronic function.

The new mechanical design strategy is based on semiconductor nanomaterials that can offer high stretchability (e.g., 140%) and large twistability such as corkscrew twists with tight pitch (e.g., 90o in 1cm). Potential uses for the new design include electronic devices for eye cameras, smart surgical gloves, body parts, airplane wings, back planes for liquid crystal displays and biomedical devises.

"Our design is of great interest because the requirements for complex shapes that can function during stretching, compression, bending, twisting and other types of extreme mechanical deformation are impossible to satisfy with conventional technology," said Song.

The secret of the design is in the silicon (Si) islands on which the active devices or circuits are fabricated. The islands form a chemically bonded, pre-strained elastomeric substrate. Releasing the pre-strain causes the metal interconnects of the circuits to buckle and form arc-shaped structures, which accommodate the deformation and make the semiconductor materials much more stretchable, without inducing significant changes in their electrical properties. The design is called noncoplanar mesh design.

The study is featured in the cover of the December issue of the Proceedings of the National Academy of Sciences (PNAS) and was selected for the special section of the journal called "In this issue." The work is titled "Materials and Noncoplanar Mesh Designs for Integrated Circuits with Linear Elastic Responses to Extreme Mechanical Deformations". The study describes a design system that can be stretched or compressed to high levels of strain, in any direction or combination of directions, with electronic properties that are independent of such strain, even in extreme arrangements. These types of systems might enable new applications not possible with current methods.


'/>"/>

Contact: Marie Guma-Diaz
m.gumadiaz@umiami.edu
305-284-1601
University of Miami
Source:Eurekalert

Related biology news :

1. A world-first in solar technology unveiled at Concordia University
2. University of Leicester archaeologist uncovers evidence of ancient chemical warfare
3. Rice University psychologist finds womens brains recognize, encode smell of male sexual sweat
4. Avian flu becoming more resistant to antiviral drugs, says University of Colorado study
5. University of Oklahoma researcher named 2008 AAAS Fellow
6. Hebrew University scientists reveal mechanism that triggers differentiation of embryo cells
7. Tufts University Prof. Maria Flytzani-Stephanopoulos named as AAAS Fellow
8. University of Miami biomedical engineer
9. Hobbit fossils represent a new species, concludes University of Minnesota anthropologist
10. Columbia University scientist devises new way to more rapidly generate bone tissue
11. Queens University Belfast plays leading role in Europe-wide tests for safer food
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/4/2017)... YORK , April 4, 2017   EyeLock ... today announced that the United States Patent and Trademark ... patent broadly covers the linking of an iris image ... same transaction) and represents the company,s 45 th ... latest patent is very timely given the multi-modal biometric ...
(Date:3/30/2017)... HONG KONG , March 30, 2017 ... developed a system for three-dimensional (3D) fingerprint identification by adopting ground ... technology into a new realm of speed and accuracy for use ... applications at an affordable cost. ... ...
(Date:3/28/2017)... 28, 2017 The report "Video ... Monitors, Servers, Storage Devices), Software (Video Analytics, VMS), and ... Global Forecast to 2022", published by MarketsandMarkets, the market ... is projected to reach USD 75.64 Billion by 2022, ... The base year considered for the study is 2016 ...
Breaking Biology News(10 mins):
(Date:4/24/2017)... ... April 24, 2017 , ... It ... a cellular milieu; however, the broad application of this cellular target engagement concept ... sensitive quantitative readouts. Cell-based thermal stabilization assays are valuable methods for particular applications, ...
(Date:4/21/2017)... ... 2017 , ... The University of Connecticut, in partnership with ... startups through the UConn Innovation Fund. The $1.5 million UConn Innovation Fund was ... , The UConn Innovation Fund provides investments of up to $100,000 to companies ...
(Date:4/21/2017)... ... April 21, 2017 , ... Frederick Innovative Technology ... of emerging technology-based businesses, recently earned a $77,518 grant from the Rural Maryland ... in 2004, FITCI is Frederick’s first incubator. A non-profit corporation, FITCI is a ...
(Date:4/20/2017)... (PRWEB) , ... April 20, 2017 , ... USDM ... for the life sciences and healthcare industries, is pleased to announce Holger Braemer ... established USDM subsidiary “USDM Europe GmbH” based in Germany. , Braemer is an ...
Breaking Biology Technology: