Navigation Links
University of Arizona scientist shares in discovery of microbe filaments' power
Date:4/18/2008

Researchers from The University of Arizona and Columbia University have discovered that tiny filaments on bacteria can bundle together and pull with forces far stronger than experts had previously thought possible.

The team of researchers, including Magdalene Maggie So, a member of the BIO5 Institute and the department of immunobiology in the UA College of Medicine, studied Type IV pili or filaments on the surface of Neisseria gonorrhoeae, the bacterium that causes the infectious disease gonorrhea. The research results help them understand the role that Type IV pili play in initiating a variety of infectious diseases including tuberculosis and how retracting pili allow bacteria to crawl and to exchange genes with each other.

When a bundle of Type IV pili retracts, it pulls with a force in the nanoNewton range, which is 10 times the force of a single retracting filament. The study demonstrates the power and cooperative nature of the nanomotors that cause Type IV pili to retract.

The motor that causes these filaments to pull is one of the strongest nanomotors known in biology, So said.

In previous studies, the same group of investigators measured single filament retraction forces in the 50 to 100 picoNewton range. This force allows the bacterium to move an object 10,000 times its own body weight. Retraction forces from a bundle are roughly 10 times higher, allowing the bacterium to move objects 100,000 times its body weight.

Pilus retraction forces are an important factor in how N. gonorrhoeae starts an infection. So, who has studied these microbes for more than 20 years, says N. gonorrhoeae communicates with a human cell by pulling on it. These pulling forces perturb the normal circuitry of the cell. As a result, the infected cell is fooled into lowering its defenses against the infecting microbe.

So said that the team of investigators came up with a new method to measure the tremendous forces applied by retracting pili. They allow bacteria to sit on a dense brushwork of tiny elastic pillars. The pili attach to these pillars. When pili retract, they bend the pillars. By measuring how the pillars bend, the investigators calculate the retraction forces.


'/>"/>

Contact: Deborah Daun
ddaun@email.arizona.edu
520-626-2059
University of Arizona
Source:Eurekalert

Related biology news :

1. Flowers fragrance diminished by air pollution, University of Virginia study indicates
2. Pitt and University of Chicago researchers uncover process behind heart muscle contraction
3. Yale Universitys Strobel recognized for work on RNA
4. Womens health-related scientific findings presented by University of Pittsburgh researchers
5. Researchers at Stockholm University awarded the Descartes prize
6. Policing cells demand ID to tell friend from foe, say University of Pennsylvania cell engineers
7. Antarcticas coldest, darkest season draws Montana State University researchers
8. University of Colorado at Boulder awarded $1 million for biofuels research
9. Viruses evolve to play by host rules, according to University of Pennsylvania researchers
10. New whitepaper offers options for university implementation of NIH policy
11. Electronic structure of DNA revealed for 1st time by Hebrew University and collaborating researchers
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/22/2016)... 22, 2016 According to the new market research ... Face, Vein, Signature, Voice), Multi-Factor), Component (Hardware and Software), Function (Contact and ... the market is expected to grow from USD 10.74 Billion in 2015 ... between 2016 and 2022. Continue Reading ... ...
(Date:11/17/2016)...  AIC announces that it has just released a new white paper authored by ... plus high speed data transfer storage solutions. Photo - http://photos.prnewswire.com/prnh/20161116/440463 ... ... ... Setting up a high performance computing or HPC system can ...
(Date:11/14/2016)... 14, 2016  Based on its recent ... & Sullivan recognizes FST Biometrics with the ... Visionary Innovation Leadership. FST Biometrics emerged as ... market by pioneering In Motion Identification (IMID) ... seamless, and non-invasive verification. This patented solution ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... Dec. 8, 2016  OncoSec Medical Incorporated ("OncoSec") ... DNA-based intratumoral cancer immunotherapies, today announced financial results ... "We are delivering on our commitment to ... ImmunoPulse┬« IL-12. We are pleased with the early ... trial, and we are focused on advancing our ...
(Date:12/8/2016)... Dec. 8, 2016 Eurofins announces the appointment of ... of Eurofins Scientific Inc. (ESI). Mr. Murray will ... professional and entrepreneurial experience in leading international business teams. As the ... testing market to uphold Eurofins, status as the global leader in ... , ...
(Date:12/8/2016)... , Dec. 8, 2016  Anaconda BioMed S.L., ... development of the next generation neuro-thrombectomy system for the ... of Tudor G. Jovin, MD to join its Scientific ... as a strategic network of scientific and clinical experts ... development of the ANCD BRAIN ┬« to its ...
(Date:12/8/2016)... 2016  Soligenix, Inc. (OTCQB: SNGX) (Soligenix or ... developing and commercializing products to treat rare diseases ... today the long-term follow-up data from its Phase ... Innate Defense Regulator (IDR), in the treatment of ... patients undergoing chemoradiation therapy (CRT).  The additional 12-month ...
Breaking Biology Technology: