Navigation Links
Unfolded proteins collapse when exposed to heat and crowded environments
Date:3/24/2014

Proteins are important molecules in our body and they fulfil a broad range of functions. For instance as enzymes they help to release energy from food and as muscle proteins they assist with motion. As antibodies they are involved in immune defence and as hormone receptors in signal transduction in cells. Until only recently it was assumed that all proteins take on a clearly defined three-dimensional structure i.e. they fold in order to be able to assume these functions. Surprisingly, it has been shown that many important proteins occur as unfolded coils. Researchers seek to establish how these disordered proteins are capable at all of assuming highly complex functions.

Ben Schuler's research group from the Institute of Biochemistry of the University of Zurich has now established that an increase in temperature leads to folded proteins collapsing and becoming smaller. Other environmental factors can trigger the same effect. The crowded environments inside cells lead to the proteins shrinking. As these proteins interact with other molecules in the body and bring other proteins together, understanding of these processes is essential "as they play a major role in many processes in our body, for instance in the onset of cancer", comments study coordinator Ben Schuler.

Measurements using the "molecular ruler"

"The fact that unfolded proteins shrink at higher temperatures is an indication that cell water does indeed play an important role as to the spatial organisation eventually adopted by the molecules", comments Schuler with regard to the impact of temperature on protein structure. For their studies the biophysicists use what is known as single-molecule spectroscopy. Small colour probes in the protein enable the observation of changes with an accuracy of more than one millionth of a millimetre. With this "molecular yardstick" it is possible to measure how molecular forces impact protein structure.

With computer simulations the researchers have mimicked the behaviour of disordered proteins. They want to use them in future for more accurate predictions of their properties and functions.

Correcting test tube results

That's why it's important, according to Schuler, to monitor the proteins not only in the test tube but also in the organism. "This takes into account the fact that it is very crowded on the molecular level in our body as enormous numbers of biomolecules are crammed into a very small space in our cells", says Schuler. The biochemists have mimicked this "molecular crowding" and observed that in this environment disordered proteins shrink, too.

Given these results many experiments may have to be revisited as the spatial organisation of the molecules in the organism could differ considerably from that in the test tube according to the biochemist from the University of Zurich. "We have, therefore, developed a theoretical analytical method to predict the effects of molecular crowding." In a next step the researchers plan to apply these findings to measurements taken directly in living cells.


'/>"/>
Contact: Ben Schuler
schuler@bioc.uzh.ch
41-446-355-535
University of Zurich
Source:Eurekalert

Related biology news :

1. More effective method of imaging proteins
2. Gold nanoantennas detect proteins
3. Discovery of a new family of key mitochondrial proteins for the function and viability of the brain
4. Discovery of plant proteins may boost agricultural yields and biofuel production
5. UCLA researchers develop way to strengthen proteins with polymers
6. Discovered a new checkpoint of cell cycle control through joint action of 2 proteins
7. A non-invasive intracellular thermometer with fluorescent proteins has been created
8. Speeding up drug discovery with rapid 3-D mapping of proteins
9. Identification of differential proteins in maternal serum with Down syndrome
10. Neiker-Tecnalia identifies antitumour proteins in the latex of the plant Euphorbia trigona
11. The appetite-suppressing effect of proteins explained
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/30/2017)... , June 30, 2017 Today, American ... and supplier of face and eye tracking software, ... Product provider program. "Artificial intelligence ... way to monitor a driver,s attentiveness levels while ... being able to detect fatigue and prevent potential ...
(Date:5/23/2017)... robotic gym for the rehabilitation and functional motor sense evaluation of lower ... . The first 30 robots will be available from June in ... The technology was developed and patented at the IIT laboratories and has ... to a 10 million euro investment from entrepreneur Sergio Dompè. ... ...
(Date:5/6/2017)... May 5, 2017 RAM Group ... a new breakthrough in biometric authentication based on ... mechanical properties to perform biometric authentication. These new sensors ... material created by Ram Group and its partners. This ... transportation, supply chains and security. Ram Group is ...
Breaking Biology News(10 mins):
(Date:8/17/2017)... ... August 17, 2017 , ... ... news outlet had provided a research update on Aytu Bioscience and cited promising ... , According to Soulstring, prescription rates for Natesto® have more than doubled since ...
(Date:8/16/2017)... ... August 16, 2017 , ... While art and science ... more closely connected than one might think. A Mesh Is Also a Snare, ... the University City Science Center’s Esther Klein Gallery (EKG) on August 17 and run ...
(Date:8/15/2017)... , Aug. 15, 2017 After spending the past ... support with crowdsourced data collection, GeneFo now offers this platform to ... aligning and amplifying support, adherence, and data collection vis a vis ... foundations mark the successful launch of this offer. ... GeneFo ...
(Date:8/15/2017)... ... 2017 , ... Kenall, a leader in sealed solid-state lighting, ... sealed and perform efficiently for years. The downlights are ideal for a variety ... such as: hospitals; behavioral health facilities; cleanrooms; containment areas; food and pharmaceutical processing ...
Breaking Biology Technology: