Navigation Links
Unearthing key function of plant hormone
Date:2/28/2014

This news release is available in German.

Plants, like animals, employ hormones as messengers, which coordinate growth and regulate how they react to the environment. One of these plant hormones, auxin, regulates nearly all aspects of plant behavior and development, for example phototropism, root growth and fruit growth. Depending on the context, auxin elicits a range of responses such as cell polarization or division. In this week's edition of Science (DOI:10.1126/science.1245125), a team of researchers including Jiri Friml from IST Austria and led by Zhenbiao Yang of the University of California, Riverside, report finding the molecular mechanism by which the plant hormone auxin affects the organization of the cell's inner skeletons.

Auxin is a remarkable molecule, impinging on a variety of plant responses in growth and development. How auxin can play such a range of roles is as yet unexplained, though auxin may activate distinct signaling systems in different contexts and so convey different signals for different responses. For example, a nuclear receptor pathway modulates gene transcription in response to auxin. Auxin binding protein 1 (ABP1) has been proposed to act independently of this nuclear pathway, regulating responses at the plasma membrane and in the cytoplasm. ABP1 was discovered nearly 40 years ago, but how it transmits the auxin signal and regulates responses remained unclear to date. In their Science publication, the researchers show that at the cell surface ABP1 interacts with transmembrane kinases (TMKs). In genetic variants of Arabidopsis in which TMKs are mutated, pathways regulated by ABP1 are impaired such as the characteristic arrangement of pavement cells.

TMKs and ABP1 are also both required for the activation of ROP GTPases, which regulate the organization of the cell's inner skeleton. This cytoskeleton is disrupted when TMKs are mutated, as filamentous actin does not localize correctly and cortical microtubules are disorganized. The researchers show that all of TMK1 as well as around a quarter of ABP1 can be found at the plasma membrane. In the presence of auxin, TMK1 and ABP1 bind to each other. The researchers propose that secreted ABP1 binds to TMK1 at the plasma membrane in response to extracellular auxin, and signal to ROP GTPases which affect the cytoskeleton.

TMK1 is at least one of the long-sought docking proteins of ABP1, which couple extracellular auxin and its perception by ABP1 to downstream cytoplasmic events. Solving the mystery of cell surface-cytoplasmic auxin perception, this research opens up a new horizon in auxin biology.


'/>"/>

Contact: Oliver Lehmann
oliver.lehmann@ist.ac.at
43-067-640-12562
Institute of Science and Technology Austria
Source:Eurekalert  

Related biology news :

1. Getting to the root -- unearthing the plant-microbe quid pro quo
2. Scientists transform skin cells into functioning liver cells
3. Compound improves cardiac function in mice with genetic heart defect, MU study finds
4. A*STAR scientists discover proteins role in human memory and learning functions
5. Exercise targets cellular powerhouses to improve heart function
6. Paper offers insights into network that plays crucial role in cell function and disease
7. Genetic function discovered that could offer new avenue to cancer therapies
8. People who enjoy life maintain better physical function as they age
9. Diffusion tensor MRI-based tractography in evaluation of nerve root function
10. Cardiac MRI reveals energy drinks alter heart function
11. Human stem cells converted to functional lung cells
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Unearthing key function of plant hormone
(Date:2/8/2017)... Inc. (NASDAQ: AWRE ), a leading supplier of ... quarter and year ended December 31, 2016. ... compared to $6.9 million in the same quarter last year. ... million compared to $2.6 million in the fourth quarter of ... $0.5 million, or $0.02 per diluted share, which compares to ...
(Date:2/7/2017)... WARSAW, Ind. , Feb. 7, 2017 ... global leader in musculoskeletal healthcare, will present at the ... Lotte New York Palace Hotel on Wednesday, February 15, ... A live webcast of the presentation can be accessed ... for replay following the conference via Zimmer Biomet,s Investor ...
(Date:2/2/2017)... , Feb. 2, 2017   TapImmune, Inc. ... immuno-oncology company specializing in the development of innovative ... treatment of cancer and metastatic disease, announced today ... GMP manufacturing of a second clinical lot of ... folate receptor alpha. The manufactured vaccine product will ...
Breaking Biology News(10 mins):
(Date:2/20/2017)... Feb. 20, 2017 /PRNewswire/ - BioAmber Inc. (NYSE: BIOA ) announced ... CEO and Fabrice Orecchioni, the company,s COO, has been named President, ... the past four years, Fabrice has overseen the construction, start-up and ... and the management of the Mitsui JV.  Fabrice has also been ... China JV. ...
(Date:2/20/2017)... ... February 20, 2017 , ... Salford-based Mettler Toledo Safeline, which ... pharmaceutical processing and packaging industries, was runner-up for the Environmental Achievement Award, sponsored ... most or taken the most innovative steps to improve its environmental performance. ...
(Date:2/20/2017)... ... February 20, 2017 , ... ... radiotherapy patients, prevent chest wall collapses in pre-term infants with respiratory distress, ... a total of $600,000 in funding through the ninth round of the ...
(Date:2/20/2017)... Fla. , Feb. 20, 2017  At ... conference in Orlando , IBM ... offerings, collaborators and clients. IBM Chairman, President and ... HIMSS17 opening keynote address today from 8:30-10 am ... www.ibm.com/watson/health , and ibm.com/industries/healthcare. Her remarks examine the ...
Breaking Biology Technology: