Navigation Links
Ultrasound idea: Prototype NIST/CU bioreactor evaluates engineered tissue while creating it
Date:5/3/2012

Researchers at the National Institute of Standards and Technology (NIST) have developed a prototype bioreactora device for culturing cells to create engineered tissuesthat both stimulates and evaluates tissue as it grows, mimicking natural processes while eliminating the need to stop periodically to cut up samples for analysis. Tissue created this way might someday be used to replace, for example, damaged or diseased cartilage in the knee and hip.

Conventional methods for evaluating the development and properties of engineered tissue are time-consuming, destructive and need to be repeated many times. By using ultrasound to monitor tissue during processing without destroying it, the novel bioreactor could be a faster and less expensive alternative.

"Most bioreactors don't do any type of nondestructive evaluation," says NIST postdoctoral researcher Jenni Popp, first author of a new paper* about the instrument. "Having some sort of ongoing evaluation of the developing tissue is definitely novel."

Cartilage is smooth connective tissue that supports joint motion. Natural cartilage is created by specialized cells that generate large amounts of structural proteins to weave a tough support material called extracellular matrix. Lacking blood vessels, cartilage has limited capability to heal from arthritis, sports injuries or other defects. Damage can be treated with drugs or joint replacement but results can be imperfect. Engineered tissue is used in some medical treatments but is not yet a routine alternative to metal or plastic joint replacements. The NIST bioreactor gives researchers a noninvasive way to monitor important structural changes in developing tissue.

The NIST/CU bioreactor can fit inside a standard incubator, which controls temperature and acidity in the growth environment. The bioreactor applies force to stimulate five small cubes of cartilage cells embedded in water-based gels. The mechanical force mimics the natural stimuli needed for the cells to create matrix proteins and develop the structure and properties of real cartilage. Ultrasound techniques monitor tissue changes over time, while a digital video microscope takes images.

Preliminary studies indicate the bioreactor both stimulates and monitors development of cells, matrix content and scaffolds to make three-dimensional engineered cartilage. The cell-laden gels were stimulated twice daily for an hour. Sulfated glycosaminoglycan (sGAG)which combines with fibrous proteins to form the extracellular matrixincreased significantly after seven days. This structural change was detected by a significant decrease in ultrasound signals after seven days.

The research described in the new paper was performed at and led by NIST. The bioreactor is a collaborative project with several co-authors from the University of Colorado Boulder (CU) Department of Chemical and Biological Engineering.

NIST and CU researchers continue to develop ultrasonic measurement methods and plan to conduct longer experiments. The bioreactor is also being used by other academic researchers as a tool for validating mathematical models of biokinetics, the study of growth and movement in developing tissue.


'/>"/>

Contact: Laura Ost
laura.ost@nist.gov
303-497-4880
National Institute of Standards and Technology (NIST)
Source:Eurekalert  

Related biology news :

1. Bats, dolphins, and mole rats inspire advances in ultrasound technology
2. Space research gives birth to new ultrasound tools for health care in orbit, on Earth
3. Researcher to present discoveries on medical uses of ultrasound to Londons Royal Society
4. Researcher to present discoveries on medical uses of ultrasound to London’s Royal Society
5. Author predicts widespread acceptance of pocket-sized ultrasound machines
6. Undergraduates low-cost ultrasound system wins Gates Foundation grant
7. Ultrasound pioneer receives highest award in engineering profession
8. National Science Foundation Fellow uses ultrasound to research bog turtles
9. Ultrasound imaging now possible with a smartphone
10. Ultrasound shown to exert remote control of brain circuits
11. BWH researchers develop a vaccine prototype stronger than traditional vaccines
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Ultrasound idea: Prototype NIST/CU bioreactor evaluates engineered tissue while creating it
(Date:5/20/2016)... MINNEAPOLIS , May 20, 2016  VoiceIt ... technology partnership with VoicePass. By working ... user experience.  Because VoiceIt and VoicePass take slightly ... two engines increases both security and usability. ... expressed excitement about this new partnership. ...
(Date:4/28/2016)... BANGALORE, India , April 28, 2016 /PRNewswire/ ... product subsidiary of Infosys (NYSE: INFY ), and ... global partnership that will provide end customers with ... banking and payment services.      (Logo: http://photos.prnewswire.com/prnh/20130122/589162 ... area for financial services, but it also plays a fundamental ...
(Date:4/15/2016)...  A new partnership announced today will help ... in a fraction of the time it takes ... life insurance policies to consumers without requiring inconvenient ... Diagnostics, rapid testing (A1C, Cotinine and HIV) and ... weight, pulse, BMI, and activity data) available at ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... 27, 2016 , ... Cancer experts from Austria, Hungary, Switzerland, ... a new and helpful biomarker for malignant pleural mesothelioma. Surviving Mesothelioma has just ... now. , Biomarkers are components in the blood, tissue or body fluids ...
(Date:6/27/2016)... , June 27, 2016  Liquid Biotech ... announced the funding of a Sponsored Research Agreement ... circulating tumor cells (CTCs) from cancer patients.  The ... in CTC levels correlate with clinical outcomes in ... These data will then be employed to support ...
(Date:6/24/2016)... NY (PRWEB) , ... June 24, 2016 , ... While ... machines such as the Cary 5000 and the 6000i models are higher end machines ... is the height of the spectrophotometer’s light beam from the bottom of the cuvette ...
(Date:6/23/2016)... Mass. , June 23, 2016   ... development of novel compounds designed to target cancer ... napabucasin, has been granted Orphan Drug Designation from ... the treatment of gastric cancer, including gastroesophageal junction ... stemness inhibitor designed to inhibit cancer stemness pathways ...
Breaking Biology Technology: