Navigation Links
Ultrasound, nanoparticles may help diabetics avoid the needle

A new nanotechnology-based technique for regulating blood sugar in diabetics may give patients the ability to release insulin painlessly using a small ultrasound device, allowing them to go days between injections rather than using needles to give themselves multiple insulin injections each day. The technique was developed by researchers at North Carolina State University and the University of North Carolina at Chapel Hill.

"This is hopefully a big step toward giving diabetics a more painless method of maintaining healthy blood sugar levels," says Dr. Zhen Gu, senior author of a paper on the research and an assistant professor in the joint biomedical engineering program at NC State and UNC-Chapel Hill.

The technique involves injecting biocompatible and biodegradable nanoparticles into a patient's skin. The nanoparticles are made out of poly(lactic-co-glycolic) acid (PLGA) and are filled with insulin.

Each of the PLGA nanoparticles is given either a positively charged coating made of chitosan (a biocompatible material normally found in shrimp shells), or a negatively charged coating made of alginate (a biocompatible material normally found in seaweed). When the solution of coated nanoparticles is mixed together, the positively and negatively charged coatings are attracted to each other by electrostatic force to form a "nano-network." Once injected into the subcutaneous layer of the skin, that nano-network holds the nanoparticles together and prevents them from dispersing throughout the body.

The coated PLGA nanoparticles are also porous. Once in the body, the insulin begins to diffuse from the nanoparticles. But the bulk of the insulin doesn't stray far it is suspended in a de facto reservoir in the subcutaneous layer of the skin by the electrostatic force of the nano-network. This essentially creates a dose of insulin that is simply waiting to be delivered into the bloodstream.

When a patient has type 1 or advanced type 2 diabetes, his or her body needs additional insulin, a hormone that transports glucose or blood sugar from the bloodstream into the body's cells. These diabetes patients must inject insulin as needed to ensure their blood sugar levels are in the "normal" range. However, these injections can be painful.

Using the new technology developed by Gu's team, a diabetes patient doesn't have to inject a dose of insulin it's already there. Instead, patients can use a small, hand-held device to apply focused ultrasound waves to the site of the nano-network, painlessly releasing the insulin from its de facto reservoir into the bloodstream.

The researchers believe the technique works because the ultrasound waves excite microscopic gas bubbles in the tissue, temporarily disrupting nano-network in the subcutaneous layer of the skin. That disruption pushes the nanoparticles apart, relaxing the electrostatic force being exerted on the insulin in the reservoir. This allows the insulin to begin entering the bloodstream a process hastened by the effect of the ultrasound waves pushing on the insulin.

"We know this technique works, and we think this is how it works, but we are still trying to determine the precise details," says Dr. Yun Jing, an assistant professor of mechanical engineering at NC State and co-corresponding author of the paper.

When the ultrasound is removed, the electrostatic force reasserts itself and pulls the nanoparticles in the nano-network back together. The nanoparticles then diffuse more insulin, refilling the reservoir.

"We've done proof-of-concept testing in laboratory mice with type 1 diabetes," Gu says. "We found that this technique achieves a quick release of insulin into the bloodstream, and that the nano-networks contain enough insulin to regulate blood glucose levels for up to 10 days."

"When the insulin runs out, you have to inject a new nano-network," says Jin Di, lead author of the paper and a Ph.D. student in Gu's research lab. "The previous nano-network is dissolved and fully absorbed into the body in a few weeks."

"This advance will certainly give millions of people with diabetes worldwide hope that better days are ahead," says Dr. John Buse, director of UNC-Chapel Hill's Diabetes Care Center and deputy director of UNC-Chapel Hill's NIH Clinical and Translational Sciences Award. "We must work to translate these exciting studies in the lab to clinical practice."


Contact: Matt Shipman
North Carolina State University

Related biology news :

1. Nanoparticles can overcome drug resistance in breast cancer cells
2. Making complex nanoparticles easily reproducible
3. Gold nanoparticles give an edge in recycling CO2
4. Stealth nanoparticles lower drug-resistant tumors defenses
5. Researchers figure out why gold nanoparticles can penetrate cell walls
6. Nanoparticles, pH phoresis could improve cancer drug delivery
7. MU researchers develop radioactive nanoparticles that target cancer cells
8. Trackable drug-filled nanoparticles -- a potential weapon against cancer
9. X-rays reveal uptake of nanoparticles by soya bean crops
10. Achilles heel: Popular drug-carrying nanoparticles get trapped in bloodstream
11. Nanoparticles reach new peaks
Post Your Comments:
Related Image:
Ultrasound, nanoparticles may help diabetics avoid the needle
(Date:11/4/2015)... 2015 --> ... by Transparency Market Research "Home Security Solutions Market - Global ... - 2022", the global home security solutions market is expected to ... The market is estimated to expand at a CAGR ... 2022. Rising security needs among customers at homes, the ...
(Date:10/29/2015)... 2015   MedNet Solutions , an innovative SaaS-based ... clinical research, is pleased to announce that it has ... as one of only three finalists for a ... and Growing" category. The Tekne Awards honor Minnesota ... technology innovation and leadership. iMedNet™ eClinical ...
(Date:10/29/2015)... 29, 2015 Daon, a global leader in ... released a new version of its IdentityX Platform ... North America have already installed IdentityX v4.0 ... a FIDO UAF certified server component as ... activate FIDO features. These customers include some of the ...
Breaking Biology News(10 mins):
(Date:12/1/2015)... ROSEVILLE, Minn. , Dec. 1, 2015  The ... the recipient of the 2015 Tekne Award in the ... th at the Minneapolis ... who have played a significant role in developing new ... people living around the world. Clostridium difficile ...
(Date:12/1/2015)... ... December 01, 2015 , ... ... specializing in scientifically backed, age-defying products, is featured as the cover story ... exponential success and unrivaled opportunities that Nerium provides. Success from Home magazine ...
(Date:12/1/2015)... ... December 01, 2015 , ... Matthew “Tex” VerMilyea, PhD, HCLD, has joined Texas ... oversee all IVF lab procedures as well as continue his research efforts into the ... miles to Auckland, New Zealand to bring home a High Complexity Clinical Laboratory Director ...
(Date:11/30/2015)... ... ... announced the opening of a new core patient care hub with the opening of ... are part of GSCG’s expansion efforts in Latin America. , Both the Arica and ... from around the world. , The clinics will be headed by Victor Perez, M.D. and ...
Breaking Biology Technology: