Navigation Links
Ultrasensitive biosensor promising for medical diagnostics

WEST LAFAYETTE, Ind. - Researchers have created an ultrasensitive biosensor that could open up new opportunities for early detection of cancer and "personalized medicine" tailored to the specific biochemistry of individual patients.

The device, which could be several hundred times more sensitive than other biosensors, combines the attributes of two distinctly different types of sensors, said Muhammad A. Alam, a Purdue University professor of electrical and computer engineering.

"Individually, both of these types of biosensors have limited sensitivity, but when you combine the two you get something that is better than either," he said.

Findings are detailed in a paper appearing Monday (May 14) in the Proceedings of the National Academy of Sciences. The paper was written by Purdue graduate student Ankit Jain, Alam and Pradeep R. Nair, a former Purdue doctoral student who is now a faculty member at the Indian Institute of Technology, Bombay.

The device ╨ called a Flexure-FET biosensor - combines a mechanical sensor, which identifies a biomolecule based on its mass or size, with an electrical sensor that identifies molecules based on their electrical charge. The new sensor detects both charged and uncharged biomolecules, allowing a broader range of applications than either type of sensor alone.

The sensor has two potential applications: personalized medicine, in which an inventory of proteins and DNA is recorded for individual patients to make more precise diagnostics and treatment decisions; and the early detection of cancer and other diseases.

In early cancer diagnostics, the sensor makes possible the detection of small quantities of DNA fragments and proteins deformed by cancer long before the disease is visible through imaging or other methods, Alam said.

The sensor's mechanical part is a vibrating cantilever, a sliver of silicon that resembles a tiny diving board. Located under the cantilever is a transistor, which is the sensor's electrical part.

In other mechanical biosensors, a laser measures the vibrating frequency or deflection of the cantilever, which changes depending on what type of biomolecule lands on the cantilever. Instead of using a laser, the new sensor uses the transistor to measure the vibration or deflection.

The sensor maximizes sensitivity by putting both the cantilever and transistor in a "bias." The cantilever is biased using an electric field to pull it downward as though with an invisible string.

"This pre-bending increases the sensitivity significantly," Jain said.

The transistor is biased by applying a voltage, maximizing its performance as well.

"You can make the device sensitive to almost any molecule as long as you configure the sensor properly," Alam said.

A key innovation is the elimination of a component called a "reference electrode," which is required for conventional electrical biosensors but cannot be miniaturized, limiting practical applications.

"Eliminating the need for a reference electrode enables miniaturization and makes it feasible for low-cost, point-of-care applications in doctors' offices," Alam said.

A U.S. patent application has been filed for the concept.


Contact: Emil Venere
Purdue University

Related biology news :

1. Orca ears inspire Stanford researchers to develop ultrasensitive undersea microphone
2. Carbon nanotubes form ultrasensitive biosensor to detect proteins
3. Ultrasensitive imaging method uses gold-silver nanocages
4. Biosensor illuminates compounds to aid fight against TB
5. Carnegie Mellon fluorescent biosensor reveals mechanism critical to immune system amplification
6. Improved characterization of nanoparticle clusters for EHS and biosensors research
7. New biosensor modelled on the immune system can detect, track and guide the clean-up of oil spills
8. New biosensor microchip could speed up drug development, Stanford researchers say
9. K-State chemists biosensor may improve food, water safety and cancer detection
10. Directed self-assembly of vertical nanotubes for biosensors, logic, nano-biofuel cells
11. Carnegie Mellon researchers create fluorescent biosensor to aid in drug development
Post Your Comments:
Related Image:
Ultrasensitive biosensor promising for medical diagnostics
(Date:6/9/2016)... 9, 2016 Paris Police ... video security solution to ensure the safety of people and ... during the major tournament Teleste, an international technology ... services, announced today that its video security solution will be ... back up public safety across the country. The system roll-out ...
(Date:6/2/2016)... The Weather Company , an IBM Business (NYSE: IBM ... which consumers will be able to interact with IBM Watson ... or text and receive relevant information about the product or ... long sought an advertising solution that can create a one-to-one ... valuable; and can scale across millions of interactions and touchpoints. ...
(Date:5/20/2016)... 20, 2016  VoiceIt is excited to announce ... By working together, VoiceIt and VoicePass ... and VoicePass take slightly different approaches to voice ... security and usability. ... new partnership. "This marketing and technology ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of commercial spectrophotometers and fluorometers ... the 6000i models are higher end machines that use the more unconventional z-dimension of ... beam from the bottom of the cuvette holder. , FireflySci has developed several ...
(Date:6/23/2016)... WI (PRWEB) , ... June 23, 2016 , ... ... supplements, is pleased to announce the launch of their brand, UP4™ Probiotics, into ... for over 35 years, is proud to add Target to its list of ...
(Date:6/23/2016)... 23, 2016 A person commits a crime, and ... to track the criminal down. An outbreak of ... Drug Administration (FDA) uses DNA evidence to track down the ... Sound far-fetched? It,s not. The FDA has increasingly used a ... of foodborne illnesses. Put as simply as possible, whole genome ...
(Date:6/23/2016)... 23, 2016  The Prostate Cancer Foundation (PCF) is pleased to ... faster cures for prostate cancer. Members of the Class of 2016 were selected ... Read More About the Class of 2016 PCF Young Investigators ... ... ...
Breaking Biology Technology: