Navigation Links
Ultrafast heating of water -- This pot boils faster than you can watch it

Scientists from the Hamburg Center for Free-Electron Laser Science have devised a novel way to boil water in less than a trillionth of a second. The theoretical concept, which has not yet been demonstrated in practice, could heat a small amount of water by as much as 600 degrees Celsius in just half a picosecond (a trillionth of a second). That is much less than the proverbial blink of an eye: one picosecond is to a second what one second is to almost 32 millennia. This would make the technique the fastest water-heating method on earth.

The novel concept opens up interesting new ways for experiments with heated samples of chemical or biological relevance, as the inventors report in this week's issue of the scientific journal Angewandte Chemie - International Edition (Nr. 51, 16 December). "Water is the single most important medium in which chemical and biological processes take place," explains DESY scientist Dr. Oriol Vendrell from the Center for Free-Electron Laser Science CFEL, a cooperation of DESY, the University of Hamburg and the German Max Planck Society. "Water is not just a passive solvent, but plays an important role in the dynamics of biological and chemical processes by stabilising certain chemical compounds and enabling specific reactions."

All it takes for superfast water heating is a concentrated flash of terahertz radiation. Terahertz radiation consists of electromagnetic waves with a frequency between radio waves and infrared. Terahertz flashes can be generated with devices called free-electron lasers that send accelerated electrons on a well defined slalom course. The particles emit electromagnetic waves in each bend that add up to an intense laser like pulse. The terahertz pulse changes the strength of the interaction between water molecules in a very short time, which immediately start to vibrate violently.

The scientists calculated the interaction of the terahertz flash with bulk water. The simulations were performed at the Supercomputer Center Jlich and used a total of 200,000 hours of processor time by massively parallel computing. On a single processor machine this would correspond to about 20 years of computation. "We have calculated that it should be possible to heat up the liquid to about 600 degrees Celsius within just half a picosecond, obtaining a transiently hot and structureless environment still at the density of the liquid, leaving all water molecules intact," explains Vendrell.

The novel method can only heat about one nanolitre (billionth of a litre) in one go. This may sound small, but is large enough for most experiments. For comparison, ink-jet printers fire droplets that are as small as one picolitre, which is a thousand times less than a nanolitre.

"The idea is to heat-up the 'solvent' so that many molecules start the desired chemical process at the same time and then watch the reaction evolve," explains Vendrell, who worked out the super heater with co-authors Pankaj Kr. Mishra and Prof. Robin Santra, also of CFEL. Although the hot mini-cloud will fly apart in less than a millisecond (a thousandth of a second), it lasts long enough to unravel everything of interest in thermal reactions such as the combination of small organic molecules to form new substances. The team currently investigates how the intense pulse of terahertz radiation affects different types of molecules dissolved in water, from inorganic to biological systems.

The reaction progress can be probed with ultrashort X-ray flashes like they will be produced by the 3.4-kilometre-long X-ray free-electron laser European XFEL, which currently is being built between the DESY campus in Hamburg and the neighbouring town of Schenefeld. When completed, the European XFEL will be able to generate 27,000 intense X-ray laser flashes per second, which can for example be used to record the different stages of chemical reactions.

One advantage of the heating method is that the terahertz pulse can be very well synchronised with the X-ray flashes to start the experiment and then probe the reaction after a well defined time. "The transient and hot environment achieved by the terahertz pulse could have interesting properties, like a matrix to study activated chemical processes," says Vendrell. "This will be the subject of further investigations."

Deutsches Elektronen-Synchrotron DESY is the leading German accelerator centre and one of the leading in the world. DESY is a member of the Helmholtz Association and receives its funding from the German Federal Ministry of Education and Research (BMBF) (90 percent) and the German federal states of Hamburg and Brandenburg (10 percent). At its locations in Hamburg andZeuthen near Berlin, DESY develops, builds and operates large particle accelerators, and uses them to investigate the structure of matter. DESY's combination of photon science and particle physics is unique in Europe.


Contact: Dr. Thomas Zoufal
Deutsches Elektronen-Synchrotron DESY

Related biology news :

1. Cheating -- and getting away with it
2. Where water is limited, researchers determine how much water is enough
3. New study highlights key role soil structure plays in water uptake by crops
4. Harvard study shows sprawl threatens water quality, climate protection, and land conservation gains
5. At AGU: Shale sequestration, water for energy & soil microbes
6. Argonne partners with Metropolitan Water Reclamation District to study Chicago River microbe population
7. Silent stalkers of dark ocean waters
8. Glaciers sizzle as they disappear into warmer water
9. Great lakes waterfowl die-offs: Finding the source
10. Underwater tree rings
11. Improving detection of radioactive material in nuclear waste water
Post Your Comments:
Related Image:
Ultrafast heating of water -- This pot boils faster than you can watch it
(Date:11/9/2015)... DUBLIN , Nov. 09, 2015 /PRNewswire/ ... announced the addition of the "Global ... to their offering. --> ... "Global Law Enforcement Biometrics Market 2015-2019" ... Research and Markets ( ) ...
(Date:11/4/2015)... New York , November 4, 2015 ... to a new market report published by Transparency Market ... Share, Growth, Trends and Forecast 2015 - 2022", the global ... of US$ 30.3 bn by 2022. The market is ... the forecast period from 2015 to 2022. Rising security ...
(Date:10/29/2015)... 29, 2015   MedNet Solutions , an innovative ... of clinical research, is pleased to announce that it ... (MHTA) as one of only three finalists for a ... Small and Growing" category. The Tekne Awards honor ... superior technology innovation and leadership. iMedNet™ ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... - iCo Therapeutics ("iCo" or "the Company") (TSX-V: ICO) ... quarter ended September 30, 2015. Amounts, unless specified ... under International Financial Reporting Standards ("IFRS"). ... Andrew Rae , President & CEO of iCo ... value enriching for this clinical program, but also ...
(Date:11/24/2015)... /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS) (TSX: AEZ) (the ... the Toronto Stock Exchange, confirms that as of the ... developments that would cause the recent movements in the ... --> About Aeterna Zentaris Inc. ... Aeterna Zentaris is a specialty biopharmaceutical company engaged in ...
(Date:11/24/2015)... ... ... This fall, global software solutions leader SAP and AdVenture Capital brought together ... their BIG ideas to improve health and wellness in their schools. , Now, the ... title of SAP's Teen Innovator, an all-expenses paid trip to Super Bowl 50, and ...
(Date:11/24/2015)... November 24, 2015 --> ... research report released by Transparency Market Research, the global ... a CAGR of 17.5% during the period between 2014 ... - Global Industry Analysis, Size, Volume, Share, Growth, Trends ... prenatal testing market to reach a valuation of US$2.38 ...
Breaking Biology Technology: