Navigation Links
UVa Health System team uncovers gene's role in type 1 diabetes
Date:11/7/2007

Researchers at the University of Virginia Health System have identified an enzyme thought to be an important instigator of the inner-body conflict that causes Type 1 diabetes. A chronic condition that affects nearly three million American children and adults, Type 1 diabetes is more severe than Type 2. Type 1 diabetes, also called autoimmune diabetes, arises when the bodys infection-fighting white blood cells start destroying the beta-cells that produce insulin in the pancreas.

To shed light on how this conflict begins, UVa researchers focused on a single gene, 12/15-lipoxygenase (12/15-LO). This gene leads to the production of the enzyme, which appears to have an important role in the activation of white blood cells in the pancreas.

Researchers developed non-obese diabetic female mice to serve as a model of Type 1 diabetes. After turning off the 12/15-LO gene in study mice, they discovered that these mice without the enzyme were 97 percent less likely to develop diabetes than mice that had normal levels of it, according to the study, published online in the journal Diabetes (to be published in print in February 2008).

This research is exciting because it advances our knowledge of a new gene that is involved in causing Type 1 diabetes and could pave the way for new treatments to prevent or reverse this increasingly prevalent disease, said Dr. Jerry L. Nadler, who is chief of the UVa Division of Endocrinology and Metabolism.

UVa researchers also discovered that study mice that did not have the 12/15-LO gene and remained non-diabetic demonstrated better glucose tolerance than non-diabetic NOD mice that were matched for age. (Worse glucose tolerance is an indication of having a pre-diabetes condition). The same group of study mice also had improved beta cell mass and less severe insulitis than their non-diabetic NOD counterparts.

Insulitis is a change in the islet cells that includes a high-fluid volume and too many white blood cells. While white blood cells normally help to fight off infections, they can cause damage over time when they infiltrate the islet cells of the pancreas.

Our findings have two practical implications, said co-author Marcia McDuffie, professor of Microbiology at UVa. First, they help us to understand the complicated process that produces self-destructive white blood cells. This knowledge may be useful in predicting which children may be at risk for developing Type 1 diabetes before significant damage has occurred in the islets. Second, we may be able to design drugs targeting this enzyme that may help to prevent Type 1 diabetes in people at risk for the disease and also to prevent recurrence of disease in transplanted islets.

Type 1 diabetes requires insulin injections, because the body cannot produce insulin on its own.


'/>"/>

Contact: Mary Jane Gore
mjgore@virginia.edu
434-924-9241
University of Virginia Health System
Source:Eurekalert

Related biology news :

1. Study finds blocking angiogenesis signaling from inside cell may lead to serious health problems
2. Youre likely to order more calories at a healthy restaurant
3. UC health news: molecular pathway may predict chemotherapy effectiveness
4. Genes, Environment and Health Initiative invests in genetic studies, environmental monitoring
5. UCR engineers to develop new tool to measure how environmental exposures affect health
6. Researchers developing device to predict proper light exposure for human health
7. Thousands of starving children could be restored to health with peanut butter program
8. Smithsonian researchers develop models to assess wetland health
9. AIBS to cohost symposium on evolution, disease and human health
10. NASA celebrates a decade observing climate impacts on health of worlds oceans
11. Conference to examine role technology can play in helping US manage healthcare costs
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/3/2016)... , May 3, 2016  Neurotechnology, a provider ... MegaMatcher Automated Biometric Identification System (ABIS) , ... multi-biometric projects. MegaMatcher ABIS can process multiple complex ... any combination of fingerprint, face or iris biometrics. ... SDK and MegaMatcher Accelerator , which ...
(Date:4/19/2016)... DUBAI , UAE, April 20, 2016 ... can be implemented as a compact web-based "all-in-one" system ... in the biometric fingerprint reader or the door interface ... requirements of modern access control systems. The minimal dimensions ... the ID readers into the building installations offer considerable ...
(Date:3/31/2016)... 31, 2016   ... the "Company") LegacyXChange is excited to release ... soon to be launched online site for trading 100% ... ) will also provide potential shareholders a sense of ... to an industry that is notorious for fraud. The ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... June 23, 2016 , ... Velocity Products, a division of ... and optimized exclusively for Okuma CNC machining centers at The International Manufacturing Technology ... among several companies with expertise in toolholding, cutting tools, machining dynamics and distribution, ...
(Date:6/23/2016)... India , June 23, 2016 ... media market research report to its pharmaceuticals section ... profiles, product details and much more. ... spread across 151 pages, profiling 15 companies and ... available at http://www.reportsnreports.com/reports/601420-global-cell-culture-media-industry-2016-market-research-report.html . ...
(Date:6/22/2016)... Research and Markets has announced the addition of the ... The global biomarkers market ... 2013. The market is expected to grow at a five-year compound ... from $50.6 billion in 2015 to $96.6 billion in 2020. ... (2015 to 2020) are discussed. As well, new products approved in ...
(Date:6/22/2016)... June 22, 2016   StockNewsNow.com , The Official ... with Dr. Nader Pourhassan , President & CEO ... on the clinical development and potential commercialization of humanized ... infection, according to the company,s website (see here: ... June 7 th , 2016, at the LD Micro ...
Breaking Biology Technology: