Navigation Links
UT Southwestern researchers uncover culprits in life-threatening clotting disorder
Date:12/3/2010

DALLAS Dec. 3, 2010 Thanks to findings by UT Southwestern Medical Center researchers, individuals with a potentially life-threatening condition predisposing them to blood clots, or thrombosis, might someday receive therapy to prevent the condition.

The findings, available online and in a future issue of The Journal of Clinical Investigation, offer new clues into the mechanisms underlying antiphospholipid syndrome (APS).

"Patients with APS have circulating antibodies that cause exaggerated thrombosis. The longstanding mystery has been how these antibodies initiate the clotting," said Dr. Philip Shaul, professor of pediatrics and senior co-author of the study.

For the study, the researchers first examined the direct actions of APS antibodies on cultured endothelial cells, which line the inside of blood vessels.

They discovered that the thrombosis-inducing antibodies recognize a protein called Beta2-Glycoprotein I on the endothelial cell surface that then interacts with a second protein, apolipoprotein E receptor 2 (apoER2). ApoER2 ultimately inactivates the enzyme that produces the antithrombotic molecule nitric oxide. The decrease in nitric oxide causes both white blood cells and platelets to bind to the endothelium, initiating the thrombosis.

Dr. Shaul said the findings are quite promising because they identify the series of molecular events responsible for the exaggerated thrombosis.

The study also found that in contrast to normal mice, mice genetically engineered to lack apoER2 are completely protected from developing thrombosis when they are given APS antibodies collected from individuals with the syndrome.

"Patients with thrombosis often require lifelong anti-coagulation therapy," he said. "The problem with this approach is that the anti-coagulation can be ineffective, and there are multiple potential serious complications related to bleeding. It makes much more sense to develop new therapies that target the underlying disease mechanism."

Dr. Chieko Mineo, assistant professor of pediatrics and senior co-author of the study, said the findings are particularly important for pregnant women with APS because they are at high risk of miscarriage and preterm birth.

"Even if a woman with APS does carry to term, the infant is often smaller than normal and can suffer from multiple complications," Dr. Mineo said. "Our ongoing studies indicate that the mechanisms we have identified that provoke thrombosis are also operative in APS during pregnancy to adversely affect the health of both the mother and the fetus."

The next step, Dr. Shaul said, is to test in the mouse models three novel therapeutic interventions that are based on the new understanding of APS.

"If they prevent thrombosis or pregnancy complications in the mouse models, clinical trials would of course follow," Dr. Shaul said.


'/>"/>

Contact: Kristen Holland Shear
kristen.hollandshear@utsouthwestern.edu
214-648-3404
UT Southwestern Medical Center
Source:Eurekalert  

Related biology news :

1. Waste from gut bacteria helps host control weight, UT Southwestern researchers report
2. RSV may hide in the lungs, lead to asthma, UT Southwestern researchers report
3. UT Southwestern researcher awarded Gates Foundation grant for novel vaccine development
4. Deranged calcium signaling contributes to neurological disorder, UT Southwestern researchers find
5. UT Southwestern researchers identify gene linked to inherited form of fatal lung disease
6. UT Southwestern scientist honored among best in Texas research
7. Natural brain substance blocks weight gain in mice, UT Southwestern researchers discover
8. UT Southwestern researchers disrupt biochemical system involved in cancer, degenerative disease
9. UT Southwestern researchers identify molecule that helps the sleep-deprived to mentally rebound
10. Two UT Southwestern researchers awarded Sloan fellowships
11. Diabetics on high-fiber diets might need extra calcium, report UT Southwestern researchers
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
UT Southwestern researchers uncover culprits in life-threatening clotting disorder
(Date:5/16/2017)... -- Veratad Technologies, LLC ( www.veratad.com ), an innovative and ... solutions, announced today they will participate as a sponsor ... May 17, 2017, in Washington D.C.,s ... Identity impacts the lives of billions of ... digital world, defining identity is critical to nearly every ...
(Date:4/19/2017)... New York , April 19, 2017 ... competitive, as its vendor landscape is marked by the ... the market is however held by five major players ... Safran. Together these companies accounted for nearly 61% of ... of the leading companies in the global military biometrics ...
(Date:4/13/2017)... India , April 13, 2017 According to ... Proofing, Identity Authentication, Identity Analytics, Identity Administration, and Authorization), Service, Authentication Type, ... MarketsandMarkets™, the IAM Market is expected to grow from USD 14.30 Billion ... Growth Rate (CAGR) of 17.3%. ... MarketsandMarkets ...
Breaking Biology News(10 mins):
(Date:8/17/2017)... ... August 17, 2017 , ... CNA Finance Chief ... provided a research update on Aytu Bioscience and cited promising increases in the ... Soulstring, prescription rates for Natesto® have more than doubled since March of this ...
(Date:8/17/2017)... ... August 17, 2017 , ... Cynvenio Biosystems, Inc., a leader ... launch of a new breast cancer monitoring study in partnership with Saint Luke’s ... potential for early detection of recurrent breast cancer using LiquidBiopsy and natural killer ...
(Date:8/16/2017)... ... August 16, 2017 , ... Tunnell Consulting announced ... at the ISPE Annual Meeting and Expo , to be held October 29 ... event’s theme is “Driving innovation to advance patient therapies.” , The ISPE Annual Meeting ...
(Date:8/16/2017)... ... August 16, 2017 , ... ... Fluidnatek® Electrospinning and Electrospraying line of nanofiber and ... table-top equipment for the lab to fully automated pilot plants and equipment ...
Breaking Biology Technology: