Navigation Links
UT Southwestern researchers identify gene linked to inherited form of fatal lung disease
Date:12/19/2008

DALLAS Dec. 19, 2008 Researchers at UT Southwestern Medical Center have determined that a mutation in a gene known for its role in defending the lungs against invading pathogens is responsible for some inherited cases of a lethal lung disease affecting older adults. The same mutation may also be associated with lung cancer, the researchers said.

This is the third gene that UT Southwestern scientists have linked with idiopathic pulmonary fibrosis, or IPF. The study appears online this week and in the January issue of American Journal of Human Genetics.

In the U.S., about 200,000 patients have IPF, and about 40,000 patients die from the disease each year, according to the Pulmonary Fibrosis Foundation. The disease typically strikes people in their 50s and older, causing severe scarring of the lungs. Death usually occurs within three years of diagnosis.

"We don't have any medicines to treat this disease," said Dr. Christine Garcia, assistant professor in the Eugene McDermott Center for Human Growth and Development and of internal medicine at UT Southwestern and the study's senior author. "If a patient is younger than 65, lung transplantation is an option, but most people who develop IPF are older than that."

The ultimate goal, Dr. Garcia said, is to find or develop a medication that can stem the progression of this pulmonary condition.

About one in 50 IPF patients have an inherited form of the disease. It is this familial form of the disease that Dr. Garcia her colleagues are focused on.

"We've been trying to identify the genes and genetic variants that underlie this disease," Dr. Garcia said. "Now, we know there are multiple genes involved."

In 2007, Dr. Garcia and her research team studied two large families in which multiple individuals were affected with IPF to search for a gene causing the disease. This led to the discovery of mutations in genes called TERT and TERC. These two genes are normally responsible for producing the telomerase enzyme, which elongates the lengths of DNA at the ends of chromosomes, called telomeres. In normal cells, telomeres shorten each time the cell divides. When they reach a certain length, the cell stops dividing. In most cancerous cells, telomeres don't shorten during cell division, allowing the cells to remain effectively immortal. Mutations in either of these two genes can be found in almost 15 percent of those with familial IPF. Up to 40 percent have short telomere lengths and evidence of telomerase dysfunction.

"But we were still left with a big question mark," Dr. Garcia said. "What about the rest of the families that have normal telomere lengths? What was causing their lung disease?"

In the current study, Dr. Garcia and her team focused on families that did not have TERC or TERT mutations. By using a genomic linkage approach a technique that scans the entire human genome for regions of DNA that are shared in common by all the individuals with the disease they were led to mutations in a gene called SFTPA2. The protein produced by this gene, surfactant protein A2, is found in the fluid of the lungs and helps protect the organ from invading pathogens.

Many of the individuals in this family who carried this mutation had not only IPF but also lung cancer, especially adenocarcinoma, with features of bronchioloalveolar cell carcinoma. It is known that people with IPF have a higher risk for developing lung cancer, and Dr. Garcia suspects that mutations in the SFTPA2 gene are associated with both IPF and lung cancer. Another family harboring a different mutation in the SFTPA2 gene also had members that exhibited IPF and lung cancer.

Dr. Garcia and her team are now working on molecular studies in cells to determine why these gene mutations put patients at risk for either of these diseases. They are also working to develop an animal model in order to determine the specific effects of SFTPA2 on different cells in the lungs.

Other UT Southwestern researchers involved in the study were lead author Dr. Yongyu Wang, a post doctoral researcher in the McDermott Center; Dr. Philip Kuan, an internal medicine resident; Dr. Chao Xing, assistant professor of clinical sciences; Jennifer Cronkhite, senior research associate in the McDermott Center; Dr. Fernando Torres, assistant professor of internal medicine; Dr. Randall Rosenblatt, professor of internal medicine; Dr. Michael DiMaio, associate professor of cardiovascular and thoracic surgery; Dr. Lisa Kinch, a bioinformatics research scientist in biochemistry with the Howard Hughes Medical Institute at UT Southwestern; and Dr. Nick Grishin, associate professor of biochemistry and an HHMI investigator.


'/>"/>

Contact: Connie Piloto
connie.piloto@utsouthwestern.edu
214-648-3404
UT Southwestern Medical Center
Source:Eurekalert  

Related biology news :

1. UT Southwestern researchers identify hundreds of genes controlling female fertility
2. BMI criteria for obesity surgery should be lowered, UT Southwestern researcher suggests
3. UT Southwestern secures $5 million NIH grant for lupus research
4. UT Southwestern scientist honored among best in Texas research
5. Stem-cell transplantation improves muscles in MD animal model, UT Southwestern researchers report
6. NIH awards $6.5 million grant to UT Southwestern to develop new antibiotic
7. UT Southwesterns Mangelsdorf elected to National Academy of Sciences
8. Gene mutations in mice mimic human-like sleep disorder, UT Southwestern researchers find
9. Mouse model developed at UT Southwestern mimics hyperglycemia, aids in diabetes research
10. Geology and biology meet in the history of US southwestern desert surface waters
11. UT Southwestern researchers create molecule that nudges nerve stem cells to mature
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
UT Southwestern researchers identify gene linked to inherited form of fatal lung disease
(Date:6/30/2017)... 2017 Today, American Trucking Associations announced ... face and eye tracking software, became the newest ... "Artificial intelligence and advanced sensing ... a driver,s attentiveness levels while on the road.  ... detect fatigue and prevent potential accidents, which could ...
(Date:6/14/2017)... (NYSE: IBM ) is introducing several innovative partner startups ... collaboration between startups and global businesses, taking place in ... nine startups will showcase the solutions they have built with ... France is one of the ... percent increase in the number of startups created between 2012 ...
(Date:5/16/2017)... N.J. , May 16, 2017  Veratad Technologies, ... provider of online age and identity verification solutions, announced ... K(NO)W Identity Conference 2017, May 15 thru May 17, ... Regan Building and International Trade Center. ... the globe and in today,s quickly evolving digital world, ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... NY (PRWEB) , ... October 12, 2017 , ... ... of Sciences today announced the three Winners and six Finalists of the 2017 ... given annually by the Blavatnik Family Foundation and administered by the New York ...
(Date:10/12/2017)... , ... October 12, 2017 ... ... has launched Rosalind™, the first-ever genomics analysis platform specifically designed for life ... Named in honor of pioneering researcher Rosalind Franklin, who made a major ...
(Date:10/11/2017)... ... October 11, 2017 , ... Proscia ... be hosting a Webinar titled, “Pathology is going digital. Is your lab ready?” ... pathology adoption best practices and how Proscia improves lab economics and realizes an ...
(Date:10/11/2017)... ... October 11, 2017 , ... ... has granted orphan drug designation to SBT-100, its novel anti-STAT3 (Signal Transducer and ... of osteosarcoma. SBT-100 is able to cross the cell membrane and bind intracellular ...
Breaking Biology Technology: