Navigation Links
UT Southwestern researchers find key step in body's ability to make red blood cells

DALLAS July 31, 2010 Researchers at UT Southwestern Medical Center have uncovered a key step in the creation of new red blood cells in an animal study.

They found that a tiny fragment of ribonucleic acid (RNA), a chemical cousin of DNA, prompts stem cells to mature into red blood cells. The researchers also created an artificial RNA inhibitor to block this process.

Such interventions, if fruitful in humans, might be useful against some cancers and other diseases, such as polycythemia vera, in which the body produces a life-threatening excess of blood cells. Conversely, a drug that boosts red blood cell production might be useful against anemia, blood loss or altitude sickness.

"The important finding is that this microRNA, miR-451, is a powerful natural regulator of red blood cell production," said Dr. Eric Olson, chairman of molecular biology at UT Southwestern and senior author of the study, which appears in the Aug. 1 issue of Genes & Development.

"We also showed that a man-made miR-451 inhibitor can reduce miR-451 levels in a mouse and block blood-cell production. We hope that this inhibitor and similarly functioning molecules might lead to new drugs against the fatal disease polycythemia vera, which currently has no therapies," said Dr. Olson, who directs the Nancy B. and Jake L. Hamon Center for Basic Research in Cancer and the Nearburg Family Center for Basic and Clinical Research in Pediatric Oncology.

Red blood cells, which carry oxygen throughout the body, are created in bone marrow from stem cells. The body steps up its production of red blood cells in response to stresses such as anemia, blood loss or low oxygen, but overproduction of the cells increases the risk of stroke and blood clots.

RNA molecules, found throughout cells, perform several jobs. MicroRNAs often bind to and disable other types of RNA, preventing them from carrying out their functions.

Dr. Olson and his colleagues study many different types of microRNAs to determine their functions and to find therapeutic uses of artificial microRNAs.

"miR-451 is found in great abundance in mature red blood cells, but its function was not known," said lead author David Patrick, a graduate student in molecular biology.

In the new study, the scientists created genetically engineered mice that could not make miR-451. The mice had a lowered red blood cell count and also had difficulty creating more red blood cells under conditions that usually stimulate production.

miR-451 works by interacting with another RNA involved in producing a protein called 14-3-3-zeta, which plays a role in the maturation of many types of cells, the researchers found.

The team also treated blood stem cells with an artificial RNA designed to inhibit miR-451. As a result, the number of red blood cells decreased.

Dr. Olson and his colleagues are pursuing a patent on miR-451 inhibitors and studying whether a microRNA-based drug might be useful in treating several blood-related disorders.


Contact: Aline McKenzie
UT Southwestern Medical Center

Related biology news :

1. UT Southwestern researchers use novel sperm stem-cell technique to produce genetically modified rats
2. UT Southwestern researchers find mechanism that may stop E. coli from developing in cattle
3. UT Southwestern researchers identify key molecular step to fighting off viruses
4. UT Southwesterns BioCenter driving biotech, medical innovation in North Texas
5. New brain nerve cells key to stress resilience, UT Southwestern researchers find
6. UT Southwestern student receives fellowship from Howard Hughes Medical Institute
7. UT Southwestern researchers find clues to TB drug resistance
8. American pika are thriving in the Sierra Nevada and southwestern Great Basin
9. Insect wranglers invade the garden at Southwestern science EXPO
10. University of Texas Southwestern Medical Center researcher wins Avanti Award in lipids
11. UT Southwestern receives $700,000 from HHMI to promote medical education of Ph.D. students
Post Your Comments:
(Date:4/24/2017)... April 24, 2017 Janice Kephart ... with  Identity Strategy Partners, LLP (IdSP) , today ... without President Trump,s March 6, 2017 Executive ... , refugee vetting can be instilled with greater confidence, ... now, all refugee applications are suspended by until ...
(Date:4/17/2017)... MELBOURNE, Florida , April 17, 2017 ... security technology company, announces the filing of its 2016 Annual Report ... Securities and Exchange Commission. ... Report on Form 10-K is available in the Investor Relations section ... well as on the SEC,s website at . ...
(Date:4/11/2017)... PALM BEACH GARDENS, Fla. , April 11, ... biometric identity management and secure authentication solutions, today ... million contract by Intelligence Advanced Research Projects Activity ... technologies for IARPA,s Thor program. "Innovation ... the onset and IARPA,s Thor program will allow ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... (PRWEB) , ... October 12, 2017 , ... ... for two-dimensional representations of a complex biological network, a depiction of a system ... big mess,” said Dmitry Korkin, PhD, associate professor of computer science at Worcester ...
(Date:10/12/2017)... ... October 12, 2017 , ... DuPont ... today that they have entered into a multiyear collaboration to identify and characterize ... with additional tools for gene editing across all applications. , Under the terms ...
(Date:10/12/2017)... ... October 12, 2017 , ... BioMedGPS announces expanded coverage ... its newest module, US Hemostats & Sealants. , SmartTRAK’s US Market for Hemostats ... sealants, synthetic sealants and biologic sealants used in surgical applications. BioMedGPS estimates the ...
(Date:10/12/2017)... San Diego, CA (PRWEB) , ... ... ... BioInformatics ( ) has launched Rosalind™, the first-ever genomics analysis platform ... eliminating all bioinformatics complexity. Named in honor of pioneering researcher Rosalind Franklin, ...
Breaking Biology Technology: