Navigation Links
UT Southwestern researchers find key step in body's ability to make red blood cells
Date:7/31/2010

DALLAS July 31, 2010 Researchers at UT Southwestern Medical Center have uncovered a key step in the creation of new red blood cells in an animal study.

They found that a tiny fragment of ribonucleic acid (RNA), a chemical cousin of DNA, prompts stem cells to mature into red blood cells. The researchers also created an artificial RNA inhibitor to block this process.

Such interventions, if fruitful in humans, might be useful against some cancers and other diseases, such as polycythemia vera, in which the body produces a life-threatening excess of blood cells. Conversely, a drug that boosts red blood cell production might be useful against anemia, blood loss or altitude sickness.

"The important finding is that this microRNA, miR-451, is a powerful natural regulator of red blood cell production," said Dr. Eric Olson, chairman of molecular biology at UT Southwestern and senior author of the study, which appears in the Aug. 1 issue of Genes & Development.

"We also showed that a man-made miR-451 inhibitor can reduce miR-451 levels in a mouse and block blood-cell production. We hope that this inhibitor and similarly functioning molecules might lead to new drugs against the fatal disease polycythemia vera, which currently has no therapies," said Dr. Olson, who directs the Nancy B. and Jake L. Hamon Center for Basic Research in Cancer and the Nearburg Family Center for Basic and Clinical Research in Pediatric Oncology.

Red blood cells, which carry oxygen throughout the body, are created in bone marrow from stem cells. The body steps up its production of red blood cells in response to stresses such as anemia, blood loss or low oxygen, but overproduction of the cells increases the risk of stroke and blood clots.

RNA molecules, found throughout cells, perform several jobs. MicroRNAs often bind to and disable other types of RNA, preventing them from carrying out their functions.

Dr. Olson and his colleagues study many different types of microRNAs to determine their functions and to find therapeutic uses of artificial microRNAs.

"miR-451 is found in great abundance in mature red blood cells, but its function was not known," said lead author David Patrick, a graduate student in molecular biology.

In the new study, the scientists created genetically engineered mice that could not make miR-451. The mice had a lowered red blood cell count and also had difficulty creating more red blood cells under conditions that usually stimulate production.

miR-451 works by interacting with another RNA involved in producing a protein called 14-3-3-zeta, which plays a role in the maturation of many types of cells, the researchers found.

The team also treated blood stem cells with an artificial RNA designed to inhibit miR-451. As a result, the number of red blood cells decreased.

Dr. Olson and his colleagues are pursuing a patent on miR-451 inhibitors and studying whether a microRNA-based drug might be useful in treating several blood-related disorders.


'/>"/>

Contact: Aline McKenzie
aline.mckenzie@utsouthwestern.edu
214-648-3404
UT Southwestern Medical Center
Source:Eurekalert

Related biology news :

1. UT Southwestern researchers use novel sperm stem-cell technique to produce genetically modified rats
2. UT Southwestern researchers find mechanism that may stop E. coli from developing in cattle
3. UT Southwestern researchers identify key molecular step to fighting off viruses
4. UT Southwesterns BioCenter driving biotech, medical innovation in North Texas
5. New brain nerve cells key to stress resilience, UT Southwestern researchers find
6. UT Southwestern student receives fellowship from Howard Hughes Medical Institute
7. UT Southwestern researchers find clues to TB drug resistance
8. American pika are thriving in the Sierra Nevada and southwestern Great Basin
9. Insect wranglers invade the garden at Southwestern science EXPO
10. University of Texas Southwestern Medical Center researcher wins Avanti Award in lipids
11. UT Southwestern receives $700,000 from HHMI to promote medical education of Ph.D. students
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:8/15/2017)...   ivWatch LLC , a medical device company focused on ... receipt of its ISO 13485 Certification, the global standard for medical ... Standardization (ISO®). ... Continuous Monitoring device for the early detection of IV infiltrations. ... "This is an important milestone for ivWatch, as ...
(Date:7/20/2017)... WASHINGTON , July 20, 2017 Delta (NYSE: ... to board any Delta aircraft at Reagan Washington National Airport (DCA). ... Delta launches biometrics ... Delta,s ... Delta Sky Club is now integrated into the boarding process to ...
(Date:6/30/2017)... 2017 Today, American Trucking Associations announced ... face and eye tracking software, became the newest ... "Artificial intelligence and advanced sensing ... a driver,s attentiveness levels while on the road.  ... detect fatigue and prevent potential accidents, which could ...
Breaking Biology News(10 mins):
(Date:8/21/2017)... ... August 21, 2017 , ... MacArthur Sotheby’s International Realty, ... pleased to announce the first Delos Wellness Signature™ residence in Hawaii is on ... working together with listing agent Kelly Allen, R(S) of Carvill Sotheby’s International Realty ...
(Date:8/21/2017)... ... 2017 , ... Boston Strategic Partners, Inc. (BSP), a life-sciences ... Outcomes Research (HEOR) and ‘big data’ to provide a variety of in-depth analysis ... trillion with nearly 1/3 spent on hospitalizations. BSP has access to real-world data ...
(Date:8/18/2017)... ... August 18, 2017 , ... Producers of the award winning ... in an upcoming episode, scheduled to broadcast fourth quarter 2017. American Farmer airs ... the independent, family-owned seed company. Educating audiences about its broad portfolio of products ...
(Date:8/17/2017)... ... August 17, 2017 , ... ... personalized medicine, today announced the launch of a new breast cancer monitoring study ... goal is to evaluate the potential for early detection of recurrent breast cancer ...
Breaking Biology Technology: