Navigation Links
UT Southwestern research reveals how cancer-driving enzyme works
Date:5/6/2011

DALLAS May 6, 2011 Cancer researchers at UT Southwestern Medical Center are helping unlock the cellular-level function of the telomerase enzyme, which is linked to the disease's growth.

Their latest findings, published today in Molecular Cell, demonstrate that telomerase repairs chromosomes in one of two ways depending on whether a cell is dividing normally or if the cell is under stress from enzyme inhibition and could lead to new or improved cancer-fighting therapies that promote inhibition of this enzyme.

"It's a significant advance in our understanding of how telomerase works," said Dr. Woodring Wright, professor of cell biology and senior author of the study. "Our goal is to identify new targets for inhibiting telomerase."

The number of times a cell divides is determined by telomeres, protective caps on the ends of chromosomes that indicate cell age. Every time a cell divides, the telomeres shorten. When telomeres shrink to a certain length, the cell either dies or stops dividing. In cancer cells, the enzyme telomerase keeps rebuilding the telomeres, so the cell never receives the cue to stop dividing.

Although telomerase was discovered in 1985, exactly how this enzyme repairs telomeres to enable cancer cells to divide and grow was largely unknown. Until now, researchers didn't know how many telomerase molecules went into action at the telomeres and under what conditions.

"It's a single molecule under normal cancer growth conditions, but if you shorten telomeres artificially by inhibiting telomerase, now it's more than one molecule acting on the ends of the telomeres," Dr. Wright said of the study's findings.

When acting as a single molecule at the telomeres, telomerase adds about 60 nucleotide molecules "in one fell swoop to the end of the chromosome," Dr. Wright said.

Researchers also discovered that structures in cells called Cajal bodies help process telomerase during chromosome-repair activity. Cajal bodies assemble ribonucleic acid (RNA) within proteins.

"Telomerase uses this RNA in order to add the sequences onto the end, and this complex is assembled or modified in some way in these Cajal bodies," Dr. Wright said.

UT Southwestern scientists next will work to pinpoint the precise molecules that bring telomerase to telomeres for potential development of inhibitors that would be new cancer drugs.

"We now need to find the molecules that are doing that as targets for additional inhibitors," Dr. Wright said. "We have identified the step, but we haven't yet identified the molecules involved."

One drug that blocks telomerase, Imetelstat or GRN163L, was developed by the biotechnology company Geron with help from Drs. Wright and Jerry Shay, professor of cell biology. That drug, tested at UT Southwestern, is currently in clinical trials for treatment of several types of cancer.


'/>"/>

Contact: Debbie Bolles
debbie.bolles@utsouthwestern.edu
214-648-3404
UT Southwestern Medical Center
Source:Eurekalert

Related biology news :

1. Signaling path in brain may prevent that Im full message, UT Southwestern scientists discover
2. Team of scientists predicts continued death of forests in southwestern US due to climate change
3. UT Southwestern researchers uncover culprits in life-threatening clotting disorder
4. Alcohol consumers are becoming the norm, UT Southwestern analysis finds
5. UT Southwestern researchers find key step in bodys ability to make red blood cells
6. UT Southwestern researchers use novel sperm stem-cell technique to produce genetically modified rats
7. UT Southwestern researchers find mechanism that may stop E. coli from developing in cattle
8. UT Southwestern researchers identify key molecular step to fighting off viruses
9. UT Southwesterns BioCenter driving biotech, medical innovation in North Texas
10. New brain nerve cells key to stress resilience, UT Southwestern researchers find
11. UT Southwestern student receives fellowship from Howard Hughes Medical Institute
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/3/2016)... --> --> Fourth quarter 2015:   ... with fourth quarter of 2014. Gross margin was 46% (32). ... Earnings per share increased to SEK 6.39 (loss: 0.49). ... --> --> January to ... up 1,142% compared with 2014. Gross margin was 43% (31). ...
(Date:2/3/2016)... Feb. 3, 2016 ... of the "Emotion Detection and Recognition ... and Others), Software Tools (Facial Expression, Voice ... Users,and Regions - Global forecast to 2020" ... --> http://www.researchandmarkets.com/research/d8zjcd/emotion_detection ) has announced the ...
(Date:2/2/2016)... NEW YORK , Feb. 2, 2016 /PRNewswire/ ... Potentials of that Rising Market Are you ... new analysis forecasts revenues for checkpoint inhibitors. Visiongain,s ... world market, submarket, product and national level. ... Instead discover what progress, opportunities and revenues those ...
Breaking Biology News(10 mins):
(Date:2/12/2016)... MedGenome,s Commitment Will Help ... of Complex Diseases Such as Cancer, Metabolic Disorders, ... --> --> MedGenome, the market ... leading provider of genomics research services globally, today ... GenomeAsia 100K consortium as a founding member. ...
(Date:2/11/2016)... , Germany and ... QGEN ; Frankfurt Prime Standard: QIA) today ... Targeted RNA Panels for gene expression profiling, expanding QIAGEN,s ... (NGS). The panels enable researchers to select from over ... changes and discover interactions between genes, cellular phenotypes and ...
(Date:2/11/2016)... ... February 11, 2016 , ... ... cutting-edge information focused on the development and manufacture of biopharmaceuticals and therapeutics, ... sponsor of the 2016 BioProcess International Awards – Recognizing Excellence in the ...
(Date:2/11/2016)... , ... February 11, 2016 , ... ... more than 150 years, continues today to pursue the highest level of accuracy ... analytical instruments: the AR9 Refractometer and the AR5 Refractometer. Accurate, reliable and ...
Breaking Biology Technology: