Navigation Links
UT Knoxville and ORNL researchers reveal key to how bacteria clear mercury pollution
Date:10/1/2009

KNOXVILLE -- Mercury pollution is a persistent problem in the environment. Human activity has lead to increasingly large accumulations of the toxic chemical, especially in waterways, where fish and shellfish tend to act as sponges for the heavy metal.

It's that persistent and toxic nature that has flummoxed scientists for years in the quest to find ways to mitigate the dangers posed by the buildup of mercury in its most toxic form, methylmercury.

A new discovery by scientists at the University of Tennessee, Knoxville, and Oak Ridge National Laboratory, however, has shed new light on one of nature's best mercury fighters: bacteria.

"Mercury pollution is a significant environmental problem," said Jeremy Smith, a UT-ORNL Governor's Chair and lead author of the new study. "That's especially true for organisms at or near the top of the food chain, such as fish, shellfish, and ultimately, humans. But some bacteria seem to know how to break down the worst forms of it. Understanding how they do this is valuable information."

Scientists have known that a specific enzyme, known as MerB, gives the bacteria the ability to convert methylmercury into a less-toxic form of mercury that poses substantially less environmental risk, a trait that lets them survive in mercury-rich environments. Finding out how this enzyme works potentially may be a viable way to combat methylmercury.

The UT Knoxville and ORNL researchers, working with colleagues from the University of Georgia and University of California, San Francisco, were able to determine the mechanism -- at the most detailed level -- of how the MerB enzyme breaks apart the dangerous methylmercury molecule.

The scientists used high-performance computers to determine how the three-dimensional structure of the enzyme uses a sort of one-two-three punch to break apart a key link in the methylmercury, between mercury and carbon atoms. Once that bond is broken, the resulting substance is on the way to becoming substantially less harmful to the environment.

Knowing the exact layout of atoms within both the methylmercury and the MerB enzyme, the researchers found out how the enzyme creates an electric field that shifts around electrons in the methylmercury, priming the toxin for deconstruction. The research is a feat that would have been impossible only a year ago. By using increasingly powerful tools, scientists are able to see much more clearly how the "puzzle pieces" of chemical reactions interact.

The next challenge researchers face will be to find a way to take this new understanding of how methylmercury can be broken down and apply it in an ecosystem at large. At least in concept, using these types of bacteria or hijacking the chemical principles they use may provide a way to combat the buildup of methylmercury.

"There's definitely more work to be done in finding ways to build on what we've learned," said Jerry Parks, an ORNL staff scientist and co-author of the study. "But, we're optimistic that these findings can lead to a productive way to address mercury in the environment."


'/>"/>

Contact: Jay Mayfield
jay.mayfield@tennessee.edu
865-974-9409
University of Tennessee at Knoxville
Source:Eurekalert

Related biology news :

1. UT Knoxville professor finds unexpected key to flowering plants diversity
2. UT Knoxville wins $16M NSF mathematics and biology center
3. UT Knoxville wins 2 $3M National Science Foundation research and education grants
4. Researchers identify proteins involved in new neurodegenerative syndrome
5. Texas researchers and educators head for Antarctica
6. MGH researchers describe new way to identify, evolve novel enzymes
7. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
8. U of MN researchers discover noninvasive diagnostic tool for brain diseases
9. U of Minnesota researchers discover noninvasive diagnostic tool for brain diseases
10. Researchers discover new strategies for antibiotic resistance
11. Researchers find new taste in fruit flies: carbonated water
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/13/2017)... 2017 UBM,s Advanced Design and Manufacturing event ... emerging and evolving technology through its 3D Printing and ... alongside the expo portion of the event and feature ... focused on trending topics within 3D printing and smart ... event will take place June 13-15, 2017 at the Jacob ...
(Date:4/11/2017)... Fla. , April 11, 2017 ... and secure authentication solutions, today announced that it ... Intelligence Advanced Research Projects Activity (IARPA) to develop ... Thor program. "Innovation has been a ... IARPA,s Thor program will allow us to innovate ...
(Date:4/11/2017)... 2017 No two people are believed ... New York University Tandon School of Engineering and ... that partial similarities between prints are common enough ... phones and other electronic devices can be more ... lies in the fact that fingerprint-based authentication systems ...
Breaking Biology News(10 mins):
(Date:8/11/2017)... Md. , Aug. 11, 2017 /PRNewswire/ ... a New York Times article regarding the ... billion, according to Kalorama Information.  The article, ... App for That"  used information from ... Patient Monitoring & Telemedicine Market  (Sleep, Diabetes, ...
(Date:8/10/2017)... (PRWEB) , ... August 09, 2017 , ... ... to help the agriculture industry reach its ideal customers with the right message. ... nation. , “As a Midwest company, we realize how crucial the agriculture industry ...
(Date:8/10/2017)... ... August 09, 2017 , ... Okyanos Center for Regenerative Medicine has announced ... Bay Hotel in Freeport, Grand Bahama on September 27, 2017. This daytime event is ... oversight from the Ministry of Health’s National Stem Cell Ethics Committee (NSCEC) and regulations ...
(Date:8/10/2017)... (PRWEB) , ... August 10, 2017 , ... ... the stock market news outlet had initiated coverage on Next Group Holdings, Inc. ... and underserved consumer markets geared toward those that cannot engage in traditional banking ...
Breaking Biology Technology: