Navigation Links
UT Dallas team creates flexible electronics that change shape inside body
Date:5/13/2014

Researchers from The University of Texas at Dallas and the University of Tokyo have created electronic devices that become soft when implanted inside the body and can deploy to grip 3-D objects, such as large tissues, nerves and blood vessels.

These biologically adaptive, flexible transistors might one day help doctors learn more about what is happening inside the body, and stimulate the body for treatments.

The research, available online and in an upcoming print issue of Advanced Materials, is one of the first demonstrations of transistors that can change shape and maintain their electronic properties after they are implanted in the body, said Jonathan Reeder BS '12, a graduate student in materials science and engineering and lead author of the work.

"Scientists and physicians have been trying to put electronics in the body for a while now, but one of the problems is that the stiffness of common electronics is not compatible with biological tissue," he said. "You need the device to be stiff at room temperature so the surgeon can implant the device, but soft and flexible enough to wrap around 3-D objects so the body can behave exactly as it would without the device. By putting electronics on shape-changing and softening polymers, we can do just that."

Shape memory polymers developed by Dr. Walter Voit, assistant professor of materials science and engineering and mechanical engineering and an author of the paper, are key to enabling the technology.

The polymers respond to the body's environment and become less rigid when they're implanted. In addition to the polymers, the electronic devices are built with layers that include thin, flexible electronic foils first characterized by a group including Reeder in work published last year in Nature.

The Voit and Reeder team from the Advanced Polymer Research Lab in the Erik Jonsson School of Engineering and Computer Science fabricated the devices with an organic semiconductor but used adapted techniques normally applied to create silicon electronics that could reduce the cost of the devices.

"We used a new technique in our field to essentially laminate and cure the shape memory polymers on top of the transistors," said Voit, who is also a member of the Texas Biomedical Device Center. "In our device design, we are getting closer to the size and stiffness of precision biologic structures, but have a long way to go to match nature's amazing complexity, function and organization."

The rigid devices become soft when heated. Outside the body, the device is primed for the position it will take inside the body.

During testing, researchers used heat to deploy the device around a cylinder as small as 2.25 millimeters in diameter, and implanted the device in rats. They found that after implantation, the device had morphed with the living tissue while maintaining excellent electronic properties.

"Flexible electronics today are deposited on plastic that stays the same shape and stiffness the whole time," Reeder said. "Our research comes from a different angle and demonstrates that we can engineer a device to change shape in a more biologically compatible way."

The next step of the research is to shrink the devices so they can wrap around smaller objects and add more sensory components, Reeder said.


'/>"/>

Contact: LaKisha Ladson
lakisha.ladson@UTDallas.edu
972-883-4183
University of Texas at Dallas
Source:Eurekalert

Related biology news :

1. UT Dallas awarded $1 million to improve prosthetics for soldiers
2. UT Dallas professor wins $2.3 million NIH award
3. UT Dallas study: Initial success for new tinnitus treatment
4. UT Dallas computer scientists create 3-D technique
5. UT Dallas researchers find early success in new treatment for stroke recovery
6. UT Dallas researchers pushing the boundaries of virtual reality
7. UT Dallas researchers awarded $4.3 million to create next-generation technologies
8. Illinois initiative creates futuristic facility
9. Team creates MRI for the nanoscale
10. Protein creates paths for growing nerve cells
11. Rice, Texas Childrens team creates biocompatible patch to heal infants with birth defects
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/5/2017)... 4, 2017 KEY FINDINGS The ... at a CAGR of 25.76% during the forecast period ... primary factor for the growth of the stem cell ... MARKET INSIGHTS The global stem cell market ... and geography. The stem cell market of the product ...
(Date:3/30/2017)... , March 30, 2017 Trends, opportunities ... (physiological and behavioral), by technology (fingerprint, AFIS, iris recognition, ... recognition, and others), by end use industry (government and ... immigration, financial and banking, and others), and by region ... , Asia Pacific , and ...
(Date:3/24/2017)... DUBLIN , Mar 24, 2017 Research ... Vehicle Access System Market Analysis & Trends - Industry Forecast to ... ... poised to grow at a CAGR of around 15.1% over the ... This industry report analyzes the market estimates and forecasts for ...
Breaking Biology News(10 mins):
(Date:4/26/2017)... ... 26, 2017 , ... NextSteps 2017, NetDimensions’ annual global user ... this May on the following dates: , ?    London, UK from May 10-11, ?    New ... and Performance Institute will be the opening keynote speaker at the NextSteps ...
(Date:4/26/2017)... Pa. , April 26, 2017  Genisphere ... delivery platform, has signed a collaborative and sponsored ... Dr. Silvia Muro . The overall goal ... and pharmacodynamics of various 3DNA designs and formulations ... involve targeting diseases of the vasculature as well ...
(Date:4/25/2017)... ... April 25, 2017 , ... Franz Inc ., ... development tools, and market leader for Semantic Graph Database technology, today ... within the most effective system for developing and deploying applications to solve the ...
(Date:4/25/2017)... , April 25, 2017 ... has licensed its novel immune-modulating technology to an undisclosed ... and allergy. Tregitopes, pronounced T·rej·itopes, are ... immunoglobulin by EpiVax CEO Annie De Groot ... intravenous immunoglobulin G, an autoimmune disease therapy, Tregitopes ...
Breaking Biology Technology: