Navigation Links
UT Dallas study reveals effect of loud noises on brain
Date:7/31/2014

Prolonged exposure to loud noise alters how the brain processes speech, potentially increasing the difficulty in distinguishing speech sounds, according to neuroscientists at The University of Texas at Dallas.

In a paper published this week in Ear and Hearing, researchers demonstrated for the first time how noise-induced hearing loss affects the brain's recognition of speech sounds.

Noise-induced hearing loss (NIHL) reaches all corners of the population, affecting an estimated 15 percent of Americans between the ages of 20 and 69, according to the National Institute of Deafness and Other Communication Disorders (NIDCD).

Exposure to intensely loud sounds leads to permanent damage of the hair cells, which act as sound receivers in the ear. Once damaged, the hair cells do not grow back, leading to NIHL.

"As we have made machines and electronic devices more powerful, the potential to cause permanent damage has grown tremendously," said Dr. Michael Kilgard, co-author and Margaret Fonde Jonsson Professor in the School of Behavioral and Brain Sciences. "Even the smaller MP3 players can reach volume levels that are highly damaging to the ear in a matter of minutes."

Before the study, scientists had not clearly understood the direct effects of NIHL on how the brain responds to speech.

To simulate two types of noise trauma that clinical populations face, UT Dallas scientists exposed rats to moderate or intense levels of noise for an hour. One group heard a high-frequency noise at 115 decibels inducing moderate hearing loss, and a second group heard a low-frequency noise at 124 decibels causing severe hearing loss.

For comparison, the American Speech-Language-Hearing Association lists the maximum output of an MP3 player or the sound of a chain saw at about 110 decibels and the siren on an emergency vehicle at 120 decibels. Regular exposure to sounds greater than 100 decibels for more than a minute at a time may lead to permanent hearing loss, according to the NIDCD.

Researchers observed how the two types of hearing loss affected speech sound processing in the rats by recording the neuronal response in the auditory cortex a month after the noise exposure. The auditory cortex, one of the main areas that processes sounds in the brain, is organized on a scale, like a piano. Neurons at one end of the cortex respond to low-frequency sounds, while other neurons at the opposite end react to higher frequencies.

In the group with severe hearing loss, less than one-third of the tested auditory cortex sites that normally respond to sound reacted to stimulation. In the sites that did respond, there were unusual patterns of activity. The neurons reacted slower, the sounds had to be louder and the neurons responded to frequency ranges narrower than normal. Additionally, the rats could not tell the speech sounds apart in a behavioral task they could successfully complete before the hearing loss.

In the group with moderate hearing loss, the area of the cortex responding to sounds didn't change, but the neurons' reaction did. A larger area of the auditory cortex responded to low-frequency sounds. Neurons reacting to high frequencies needed more intense sound stimulation and responded slower than those in normal hearing animals. Despite these changes, the rats were still able to discriminate the speech sounds in a behavioral task.

"Although the ear is critical to hearing, it is just the first step of many processing stages needed to hold a conversation," Kilgard said. "We are beginning to understand how hearing damage alters the brain and makes it hard to process speech, especially in noisy environments."


'/>"/>

Contact: Ben Porter
ben.porter@utdallas.edu
972-883-2193
University of Texas at Dallas
Source:Eurekalert  

Related biology news :

1. UT Dallas researchers awarded $4.3 million to create next-generation technologies
2. UT Dallas researchers pushing the boundaries of virtual reality
3. UT Dallas researchers find early success in new treatment for stroke recovery
4. UT Dallas computer scientists create 3-D technique
5. UT Dallas study: Initial success for new tinnitus treatment
6. UT Dallas professor wins $2.3 million NIH award
7. UT Dallas awarded $1 million to improve prosthetics for soldiers
8. UT Dallas team creates flexible electronics that change shape inside body
9. Study by UC Santa Barbara researchers suggests that bacteria communicate by touch
10. Law that regulates shark fishery is too liberal: UBC study
11. New study will help protect vulnerable birds from impacts of climate change
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
UT Dallas study reveals effect of loud noises on brain
(Date:1/26/2017)... 2017  Crossmatch, a leading provider of security and ... at combatting fraud, waste and abuse in assistance operations ... Action on Disaster Relief conference in Panama ... agencies and foreign assistance organizations throughout Latin ... are a largely unacknowledged problem in the foreign assistance ...
(Date:1/24/2017)... 24, 2017 Biopharm Reports has carried ... use of nuclear magnetic resonance spectroscopy (NMR). This ... profiled current practices, developments, trends and end-user plans ... growth and opportunities. These areas include growth in ... needs and innovation requirements, hyphenated NMR techniques, main ...
(Date:1/21/2017)... Research and Markets has announced the addition of the ... ... voice recognition biometrics market to grow at a CAGR of 19.36% ... present scenario and the growth prospects of the global voice recognition ... considers the revenue generated from the sales of voice recognition biometrics ...
Breaking Biology News(10 mins):
(Date:2/16/2017)... 16, 2017  Champions Oncology, Inc. (NASDAQ: ... sale of advanced technology solutions and products to personalize ... the addition of new cohorts of PDX models to ... will expand Champions, product line in hepatocellular cancer, breast ... AML, and non-small cell lung cancer (including EGFR mutation; ...
(Date:2/16/2017)... , Feb. 16, 2017  Rhythm, ... rare genetic deficiencies that result in life-threatening ... a $41 million mezzanine round of financing ... OrbiMed, MPM Capital, New Enterprise Associates, Pfizer ... undisclosed public healthcare investment fund. Rhythm will ...
(Date:2/15/2017)... ... February 15, 2017 , ... ... President and Chief Commercial Officer with GenePeeks. Matt is a veteran life ... is a computational genomics company focused on identifying inherited disease risk in future ...
(Date:2/15/2017)... Feb. 15, 2017  NASA provider SpaceX is scheduled ... the  International Space Station  no earlier than 10:01 a.m. ... will begin at 8:30 a.m. on NASA Television and ... spacecraft will lift off on the company,s Falcon ... Kennedy Space Center in ...
Breaking Biology Technology: