Navigation Links
UT Austin engineer converts yeast cells into 'sweet crude' biofuel
Date:1/22/2014

AUSTIN, Texas Researchers at The University of Texas at Austin's Cockrell School of Engineering have developed a new source of renewable energy, a biofuel, from genetically engineered yeast cells and ordinary table sugar. This yeast produces oils and fats, known as lipids, that can be used in place of petroleum-derived products.

Assistant professor Hal Alper, in the Cockrell School's McKetta Department of Chemical Engineering, along with his team of students, created the new cell-based platform. Given that the yeast cells grow on sugars, Alper calls the biofuel produced by this process "a renewable version of sweet crude."

The researchers' platform produces the highest concentration of oils and fats reported through fermentation, the process of culturing cells to convert sugar into products such as alcohol, gases or acids. This work was published in Nature Communications on Jan. 20.

The UT Austin research team was able to rewire yeast cells to enable up to 90 percent of the cell mass to become lipids, which can then be used to produce biodiesel.

"To put this in perspective, this lipid value is approaching the concentration seen in many industrial biochemical processes," Alper said. "You can take the lipids formed and theoretically use it to power a car."

Since fatty materials are building blocks for many household products, this process could be used to produce a variety of items made with petroleum or oils from nylon to nutrition supplements to fuels. Biofuels and chemicals produced from living organisms represent a promising portion of the renewable energy market. Overall, the global biofuels market is expected to double during the next several years, going from $82.7 billion in 2011 to $185.3 billion in 2021.

"We took a starting yeast strain of Yarrowia lipolytica, and we've been able to convert it into a factory for oil directly from sugar," Alper said. "This work opens up a new platform for a renewable energy and chemical source."

The biofuel the researchers formulated is similar in composition to biodiesel made from soybean oil. The advantages of using the yeast cells to produce commercial-grade biodiesel are that yeast cells can be grown anywhere, do not compete with land resources and are easier to genetically alter than other sources of biofuel.

"By genetically rewiring Yarrowia lipolytica, Dr. Alper and his research group have created a near-commercial biocatalyst that produces high levels of bio-oils during carbohydrate fermentation," said Lonnie O. Ingram, director of the Florida Center for Renewable Chemicals and Fuels at the University of Florida. "This is a remarkable demonstration of the power of metabolic engineering."

So far, high-level production of biofuels and renewable oils has been an elusive goal, but the researchers believe that industry-scale production is possible with their platform.

In a large-scale engineering effort spanning over four years, the researchers genetically modified Yarrowia lipolytica by both removing and overexpressing specific genes that influence lipid production. In addition, the team identified optimum culturing conditions that differ from standard conditions. Traditional methods rely on nitrogen starvation to trick yeast cells into storing fat and materials. Alper's research provides a mechanism for growing lipids without nitrogen starvation. The research has resulted in a technology for which UT Austin has applied for a patent.

"Our cells do not require that starvation," Alper said. "That makes it extremely attractive from an industry production standpoint."

The team increased lipid levels by nearly 60-fold from the starting point.

At 90 percent lipid levels, the platform produces the highest levels of lipid content created so far using a genetically engineered yeast cell. To compare, other yeast-based platforms yield lipid content in the 50 to 80 percent range. However, these alternative platforms do not always produce lipids directly from sugar as the UT Austin technology does.

Alper and his team are continuing to find ways to further enhance the lipid production levels and develop new products using this engineered yeast.


'/>"/>

Contact: Sandra Zaragoza
zaragoza@utexas.edu
512-471-2129
University of Texas at Austin
Source:Eurekalert  

Related biology news :

1. Texas Invasive Species Program established at UT Austin
2. Media advisory for Entomology 2013 in Austin, Texas
3. Columbia Engineering and Penn researchers increase speed of single-molecule measurements
4. Melting glaciers, enough sand to bury London, and ancient ecosystem engineering
5. Innovative cell printing technologies hold promise for tissue engineering R&D
6. New genetically engineered mice aid understanding of incurable neuromuscular disease
7. 5th Annual Advances in Biomolecular Engineering Symposium
8. Recapitulation of the entire hepatitis C virus life in engineered mouse cell lines
9. Queens is UK leader for female scientists and engineers
10. Medical device, health professionals attend first national conference on value-driven engineering
11. Chemical engineers at UMass Amherst find high-yield method of making xylene from biomass
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
UT Austin engineer converts yeast cells into 'sweet crude' biofuel
(Date:3/30/2017)... LOS ANGELES , March 30, 2017  On ... Hack the Genome hackathon at ... This exciting two-day competition will focus on developing health ... experience. Hack the Genome is ... has been tremendous. The world,s largest companies in the ...
(Date:3/27/2017)... ROCKVILLE CENTRE, N.Y. , March 27, 2017 ... by Healthcare Information and Management Systems Society (HIMSS) ... Analytics Outpatient EMR Adoption Model sm . In ... top 12% of U.S. hospitals using an electronic ... recognized CHS for its high level of EMR ...
(Date:3/22/2017)... VILNIUS, Lithuania , March 21, 2017 /PRNewswire/ ... identification and object recognition technologies, today announced the ... development kit (SDK), which provides improved facial recognition ... safety cameras on a single computer. The new ... algorithms to improve accuracy, and it utilizes a ...
Breaking Biology News(10 mins):
(Date:8/17/2017)... Village, CA (PRWEB) , ... August 17, 2017 ... ... technology for cancer research and personalized medicine, today announced the launch of a ... Kansas City, Missouri. The study’s goal is to evaluate the potential for early ...
(Date:8/16/2017)... ... August 16, 2017 , ... ... Electrospinning and Electrospraying line of nanofiber and nanoparticle fabrication ... for the lab to fully automated pilot plants and equipment for industrial ...
(Date:8/16/2017)... ... August 16, 2017 , ... While art and science are often ... connected than one might think. A Mesh Is Also a Snare, a group ... City Science Center’s Esther Klein Gallery (EKG) on August 17 and run through September ...
(Date:8/16/2017)... ... August 16, 2017 , ... We are proud ... (FDA) inspection at our Dilworth, MN site. The inspection took place Monday, July ... conducted as part of a routine Bioresearch Monitoring Program (BIMO) with the USFDA ...
Breaking Biology Technology: