Navigation Links
USU scientists report major advance in human antibody therapy against deadly Nipah virus
Date:10/30/2009

Rockville, Md. (Oct. 30, 2009) A collaborative research team from the Uniformed Services University of the Health Sciences (USU), Australian Animal Health Laboratory and National Cancer Institute, a component of the National Institutes of Health, reports a major step forward in the development of an effective therapy against two deadly viruses, Nipah virus and the related Hendra virus. The results of this finding appear Oct. 30, 2009, in the open access journal PLoS Pathogens at http://dx.plos.org/10.1371/journal.ppat.1000642.

Nipah and Hendra viruses are found in Pteropid fruit bats (flying foxes) and are characterized by their recent emergence as agents capable of causing illness and death in domestic animals and humans.

In experiments carried out in ferrets at the Australian Animal Health Laboratory in Geelong, Victoria, Australia, where there is a high-level safety and security facility for working with live Nipah and Hendra viruses, the team of researchers demonstrated that giving an anti-virus human monoclonal antibody therapy after exposure to Nipah virus protected the animals from disease.

"These findings are extremely encouraging and clearly suggest the potential that a treatment for Hendra virus infection in a similar manner should be possible, given the very strong cross-reactive activity this antibody has against Hendra virus," said Deborah Middleton, D.V.M., Ph.D., who directed the animal experiments at the Australian Animal Health Laboratory.

Recent earlier work at the National Cancer Institute and USU resulted in the discovery and development of a human monoclonal antibody, m102.4, which could attack a critical component of both the Nipah and Hendra viruses. Antibodiesproteins found in blood or other bodily fluids of vertebratesare used by the immune system to identify and neutralize viruses and bacteria.

The study's corresponding authors are Christopher C. Broder, Ph.D., professor of microbiology at USU, and Katharine Bossart, Ph.D., a USU alumna, now an assistant professor in the Department of Microbiology, Boston University School of Medicine and an investigator at the National Emerging Infectious Diseases Laboratories Institute in Boston. The pair led a team of researchers to test the effectiveness of the new antibody therapy in animals. The experiments were supported in part by the National Institute of Allergy and Infectious Diseases, NIH. The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. provides research support and management capabilities to the research team.

"We now have good evidence that this antibody could save human lives and the insights offered about how it works also could potentially provide a starting point to developing tools for targeting other diseases," said study co-author Dimiter S. Dimitrov, Ph.D., senior biomedical research scientist at the National Cancer Institute.

Nipah and Hendra viruses, members of the henipavirus family, are highly infectious agents that emerged from flying foxes in the 1990s to cause serious disease outbreaks in humans and livestock in Australia, Bangladesh, India, Malaysia and Singapore. Recent outbreaks have resulted in acute respiratory distress syndrome and encephalitis, person-to-person transmission, and up to 75 percent case fatality rates among humans. Additionally, these properties could allow the viruses to be used as bioterror weapons.

Initial experiments by the researchers using ferrets found that m102.4 was well tolerated, exhibited no adverse effects and retained high neutralizing activity. The findings suggested that m102.4 could potentially be used as a preventive or post-exposure agent, a diagnostic probe or a research reagent.

Hendra virus re-emerged again in August 2009, resulting in the death of several horses and one human. During the outbreak, in a compassionate attempt to save a human life, an available low dose of m102.4 was administered to an individual with advanced encephalitic disease. Although there were no adverse side effects, the patient did not improve as the irreversible damage by the virus had already been done. Like other antimicrobials, the clinical success of this antibody will depend on dose and time of administration. As Hendra and Nipah viruses cause severe disease in humans, a successful application of this antibody as a post-exposure therapy will likely require early intervention.

"In order to make clinical use of this therapeutic antibody against Hendra or Nipah virus, larger amounts will need to be prepared under proper manufacturing guidelines, carefully evaluated again in animal models and safety tested for human use" said Dr. Broder.

Dr. Bossart noted, "We hope this demonstration of anti-viral activity will foster some immediate activities to facilitate further development for future use in humans."

"There are currently no licensed and approved vaccines or therapeutics for prevention and treatment of disease caused by these viruses for humans or livestock," said Dr. Broder. "This fully-human monoclonal antibody is the first antiviral agent against the Nipah and Hendra viruses that has a genuine potential for human therapeutic use."

"The generation of these antibodies as therapeutics could help control outbreaks in geographical regions susceptible to henipaviruses, and could turn information from a deadly pathogen into a benefit for mankind," said Dr. Dimitrov.


'/>"/>

Contact: JoAnn Sperber
jsperber@hjf.org
301-294-1234
Henry M. Jackson Foundation for the Advancement of Military Medicine
Source:Eurekalert

Related biology news :

1. Scientists discover influenzas Achilles heel: Antioxidants
2. EPAs new green parking lot allows scientists to study permeable surfaces that may help the environment
3. Scientists are first to observe the global motions of an enzyme copying DNA
4. Boston University scientists first to see RNA network in live bacterial cells
5. Scientists create NICE solution to pneumonia vaccine testing problems
6. Scientists of the UGR obtain a bioinsecticide to control the Mediterranean fruit fly
7. Queens scientists on international team discover ecologically unique changes in Arctic lake
8. UF scientists discover new explanation for controversial old patient-care technique
9. UF receives $12.2 million to establish national network of scientists
10. Caltech scientists create robot surrogate for blind persons in testing visual prostheses
11. Time in a bottle: Scientists watch evolution unfold
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/16/2016)... --  EyeLock LLC , a market leader of iris-based ... IoT Center of Excellence in Austin, Texas ... embedded iris biometric applications. EyeLock,s iris authentication ... with unmatched biometric accuracy, making it the most proven ... platform uses video technology to deliver a fast and ...
(Date:4/28/2016)... , April 28, 2016 Infosys ... (NYSE: INFY ), and Samsung SDS, a global ... that will provide end customers with a more secure, fast ...      (Logo: http://photos.prnewswire.com/prnh/20130122/589162 ) , ... but it also plays a fundamental part in enabling and ...
(Date:4/19/2016)... UAE, April 20, 2016 The ... as a compact web-based "all-in-one" system solution for all ... fingerprint reader or the door interface with integration authorization ... access control systems. The minimal dimensions of the access ... into the building installations offer considerable freedom of design ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... 2016  Liquid Biotech USA ... a Sponsored Research Agreement with The University of ... from cancer patients.  The funding will be used ... with clinical outcomes in cancer patients undergoing a ... be employed to support the design of a ...
(Date:6/24/2016)... (PRWEB) , ... June 24, 2016 , ... While the ... such as the Cary 5000 and the 6000i models are higher end machines that ... the height of the spectrophotometer’s light beam from the bottom of the cuvette holder. ...
(Date:6/23/2016)... , June 23, 2016   Boston Biomedical ... novel compounds designed to target cancer stemness pathways, ... been granted Orphan Drug Designation from the U.S. ... of gastric cancer, including gastroesophageal junction (GEJ) cancer. ... designed to inhibit cancer stemness pathways by targeting ...
(Date:6/23/2016)... , ... June 23, 2016 , ... ... YM (Yeast and Mold) microbial test has received AOAC Research Institute approval 061601. ... microbial tests introduced last year,” stated Bob Salter, Vice President of Regulatory and ...
Breaking Biology Technology: