Navigation Links
UPCI researchers target 'cell sleep' to lower chances of cancer recurrence
Date:8/1/2013

PITTSBURGH, Aug. 1, 2013 An international research team led by University of Pittsburgh Cancer Institute (UPCI) scientists discovered that by preventing cancer cells from entering a state of cellular sleep, cancer drugs are more effective, and there is a lower chance of cancer recurrence. The findings, which will be published in the August 15 issue of the journal Cancer Research and are available online, are the first to show that it is possible to therapeutically target cancer cells to keep them from entering a cellular state called quiescence, or "cell sleep." Quiescence can be a dangerous source of tumor recurrence because cancer drugs don't typically destroy quiescent cells.

"Successful cancer therapy often is hampered by tumor cell quiescence because these cells remain viable and are a reservoir for tumor progression," said Anette Duensing, M.D., assistant professor of pathology at UPCI. "By inhibiting a key regulator of quiescence, we are able to kill a larger fraction of cancer cells."

Dr. Duensing and her colleagues made the discovery while studying gastrointestinal stromal tumors (GISTs), which are uncommon tumors that begin in the walls of the gastrointestinal tract. According to the American Cancer Society, about 5,000 cases of GISTs occur each year in the United States with an estimated five-year survival rate of 45 percent in patients with advanced disease.

GISTs are caused by a single gene mutation, which means they can be successfully treated with the targeted therapy drug imatinib, known by the trade name Gleevec. Unlike traditional chemotherapy, which kills all rapidly dividing cells, targeted therapy stops cancer by interfering with specific molecules needed for tumor growth.

Unfortunately, GISTs rapidly develop resistance to the treatment and complete cancer remission using Gleevec is rare. A key regulator of the cancer cell sleep process is a protein complex called DREAM, which is named for the multiple proteins involved. Gleevec induces cell sleep using the DREAM complex, which means that the drug intrinsically limits its own effectiveness.

"When we disrupted the DREAM complex in the lab, we significantly increased cancer cell death using Gleevec," said Dr. Duensing. "This underscores the importance of the DREAM complex as a novel drug target worthy of preclinical and clinical investigations."


'/>"/>

Contact: Allison Hydzik
hydzikam@upmc.edu
412-647-9975
University of Pittsburgh Schools of the Health Sciences
Source:Eurekalert

Related biology news :

1. Study by UC Santa Barbara researchers suggests that bacteria communicate by touch
2. UC Santa Barbara researchers discover genetic link between visual pathways of hydras and humans
3. Researchers attempt to solve problems of antibiotic resistance and bee deaths in one
4. UNH researchers find African farmers need better climate change data to improve farming practices
5. Ottawa researchers to lead world-first clinical trial of stem cell therapy for septic shock
6. Researchers uncover molecular pathway through which common yeast becomes fungal pathogen
7. Researchers print live cells with a standard inkjet printer
8. Columbia Engineering and Penn researchers increase speed of single-molecule measurements
9. Researchers reveal how a single gene mutation leads to uncontrolled obesity
10. Researchers discover novel therapy for Crohns disease
11. New paper by Notre Dame researchers describes method for cleaning up nuclear waste
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/19/2016)... , UAE, April 20, 2016 ... be implemented as a compact web-based "all-in-one" system solution ... the biometric fingerprint reader or the door interface with ... of modern access control systems. The minimal dimensions of ... ID readers into the building installations offer considerable freedom ...
(Date:4/14/2016)... 14, 2016 BioCatch ™, ... today announced the appointment of Eyal Goldwerger ... Goldwerger,s leadership appointment comes at a time ... the deployment of its platform at several of the ... which discerns unique cognitive and physiological factors, is a ...
(Date:3/31/2016)... March 31, 2016  Genomics firm Nabsys has completed ... Barrett Bready , M.D., who returned to the ... original technical leadership team, including Chief Technology Officer, ... Development, Steve Nurnberg and Vice President of Software and ... company. Dr. Bready served as CEO of ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016   Boston Biomedical ... novel compounds designed to target cancer stemness pathways, ... been granted Orphan Drug Designation from the U.S. ... of gastric cancer, including gastroesophageal junction (GEJ) cancer. ... designed to inhibit cancer stemness pathways by targeting ...
(Date:6/23/2016)... Prostate Cancer Foundation (PCF) is pleased to announce 24 new Young ... cancer. Members of the Class of 2016 were selected from a pool of ... More About the Class of 2016 PCF Young Investigators ... ... ...
(Date:6/23/2016)... , ... June 23, 2016 , ... In a new ... in Denmark detail how a patient who developed lymphedema after being treated for breast ... results could change the paradigm for dealing with this debilitating, frequent side effect of ...
(Date:6/23/2016)... ... 23, 2016 , ... ClinCapture, the only free validated electronic ... showcase its product’s latest features from June 26 to June 30, 2016 for ... Disrupting Clinical Trials in The Cloud during the conference. DIA (Drug Information ...
Breaking Biology Technology: