Navigation Links
UNH researchers receive NSF grant to 'scale up' stream ecology
Date:10/12/2011

DURHAM, N.H. -- University of New Hampshire scientists have received National Science Foundation (NSF) funding to explore how small-scale ecological experiments can be applied to understand the behavior of entire ecosystems, part of the agency's nascent effort to investigate large-scale biological responses to climate and land-use change.

Professor William McDowell of the department of natural resources and the environment (NREN) and assistant professor Wilfred Wollheim of NREN and UNH's Institute for the Study or Earth, Oceans, and Space (EOS) are part of a multi-institution project that will "scale up" measurements of fundamental stream or "lotic" properties, and the effects of aquatic animals on those properties, to predict characteristics of entire stream networks.

For their project, entitled "Stream Consumers and Lotic Ecosystem Rates (SCALER): Scaling from Centimeters to Continents," McDowell is the UNH principal investigator; Wollheim is co-investigator. Researchers at Kansas State University are leading the $3.3 million project, of which $741,000 will support the UNH research.

"This project is looking at how we can scale fundamental processes of stream ecology to a whole-stream scale," says McDowell. "We also want to learn how good our individual site-specific work is at predicting broad patterns across the continent." McDowell will conduct field work in Puerto Rico on a tropical dry forest stream dominated by mullets and freshwater shrimp. He will explore stream metabolism how carbon is produced, consumed and vented into the atmosphere as well as nutrient retention and the effects of predators and herbivores on stream metabolism and nutrient cycling.

Across the North American continent, the SCALER experiment will be carried out in a tropical forest, a temperate mountain forest, a prairie, a northern evergreen forest, and a tundra. Small, medium and large streams in each area will be examined at scales of centimeters to tens of meters. Modeling will be done to scale measurements up to regional and continental levels.

"Modeling in environmental studies is a way to tie together what we understand about various aspects of the environment so that we can determine how the entire system works," notes Wollheim of the Water Systems Analysis Group within EOS, who will conduct the core modeling to translate measurements in individual stream sections, or "reaches", up to entire river systems and, ultimately, continental scales. "The models I'll work with will help us to better understand how and why ecosystems are changing, given climate variations and various human activities."

Part of the experiment will involve "consumer manipulation" within a measurable section of a stream by taking away or adding animals like aquatic insects or fish to see what effects these animals have on the overall stream processes.

The experiments and modeling results will be relevant to ecology as a whole because few "coupled and nested" experimental and theoretical scaling exercises have been undertaken in any environment. A coupled, nested environment is one that links many smaller parts with a larger whole in this case, the overall flow of water links different stream reaches into a larger river network.

Says Wollheim, "Very few studies have tried to understand processes across these different scales to determine, for example, how does carbon storage measured in individual stream reaches relate to carbon storage of an entire river network?"

Insight into how nature works at this level is necessary to understand both whole-system dynamics as well as to manage human impacts on entire watersheds.

McDowell and Wollheim are among several UNH scientists recently funded by NSF for three of the 14 projects competitively won under its new macrosystems biology program. EOS researchers Jingfeng Xiao and Scott Ollinger, and Steve Frolking were awarded for two additional projects, respectively.

NSF's large-scale biology program, a first for the agency, will tackle big questions in search of equally big answers: How will the biosphere respond to natural and human-induced changes across a range of time and space scales? What is the pace and pattern of the responses? What is the effect on ecosystem services, such as the availability of freshwater, across regions and continents?


'/>"/>

Contact: Beth Potier
beth.potier@unh.edu
603-862-1566
University of New Hampshire
Source:Eurekalert

Related biology news :

1. Medical College of Wisconsin researchers show molecule inhibits metastasis
2. Researchers study agings effect on the brain
3. Notre Dame researchers report progress on compound to treat neurological diseases
4. UNH researchers: Multibeam sonar can map undersea gas seeps
5. Researchers realize high-power, narrowband terahertz source at room temperature
6. Researchers: Apply public trust doctrine to rescue wildlife from politics
7. Dead Sea researchers discover freshwater springs and numerous micro-organisms
8. Eating balanced meals, farm-fresh produce benefits families, communities, nutrition researchers say
9. LSU researchers find impact of oil spill in marsh fish species
10. MU researchers find new insight into fatal spinal disease
11. UCLA Engineering researchers help develop complete map of mouse genetic variation
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/1/2016)... June 1, 2016 Favorable Government ... Administration and Criminal Identification to Boost Global Biometrics System ... released TechSci Research report, " Global Biometrics Market ... Forecast and Opportunities, 2011 - 2021", the global biometrics ... 2021, on account of growing security concerns across various ...
(Date:5/16/2016)... NEW YORK , May 16, 2016   ... authentication solutions, today announced the opening of an IoT ... to strengthen and expand the development of embedded ... provides an unprecedented level of convenience and security with ... to authenticate one,s identity aside from DNA. EyeLock,s platform ...
(Date:5/3/2016)... May 3, 2016  Neurotechnology, a provider of ... MegaMatcher Automated Biometric Identification System (ABIS) , a ... projects. MegaMatcher ABIS can process multiple complex biometric ... combination of fingerprint, face or iris biometrics. It ... and MegaMatcher Accelerator , which have ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... 23, 2016  Blueprint Bio, a company dedicated to ... medical community, has closed its Series A funding round, ... "We have received a commitment from Forentis ... need to meet our current goals," stated Matthew ... runway to complete validation on the current projects in ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... regulatory and technical consulting, provides a free webinar on Performing Quality ... 13, 2016 at 12pm CT at no charge. , Incomplete investigations are still ...
(Date:6/22/2016)... June 22, 2016 Cell Applications, Inc. ... them to produce up to one billion human ... within one week. These high-quality, consistent stem cells ... cells and spend more time doing meaningful, relevant ... proprietary, high-volume manufacturing process that produces affordable, reliable ...
(Date:6/22/2016)... Philadelphia, PA (PRWEB) , ... June 22, 2016 ... ... the University City Science Center’s Port business incubator and current participant in the ... therapy and treatment for cancer patients. , Quantitative Radiology Solutions helps physicians ...
Breaking Biology Technology: