Navigation Links
UMass Amherst researchers develop powerful new technique to study protein function
Date:6/19/2013

AMHERST, Mass. In the cover story for the journal Genetics this month, neurobiologist Dan Chase and colleagues at the University of Massachusetts Amherst describe a new experimental technique they developed that will allow scientists to study the function of individual proteins in individual cell types in a living organism.

The advance should allow deeper insights into protein function, Chase says, "because we can only get a true understanding of what that single protein does when we isolate its function in a living organism. There was no tool currently available to do this."

The journal's cover art uses a jigsaw puzzle of a worm to illustrate how knockdown strategies in this organism have evolved over time to achieve more and more cell-type specificity, culminating in the new approach developed by the Chase lab, which can restrict knockdown to a single cell type.

"This strategy is super cool and it works great," he says. "We've already used it to tease apart some of the mechanisms of dopamine signaling, but the strategy can be adapted to study the function of any protein involved in any biological process."

There are more than 1 trillion cells in the human body, yet only 20,000 to 25,000 genes are expressed in them, Chase explains, so each gene must be expressed in many different cells. Understanding the function of 20,000 genes and whether this differs by cell type has been difficult, but over the last 10 years, he adds, "we have learned that the answer to this last question is a resounding yes. Gene function can differ by cell type."

Pursuing this further, however, was hampered by the fact that traditional approaches for studying protein function rely on genetic mutations that act on DNA, so they disrupt protein function in ALL cells. And to understand what a protein really does, it must be studied in an individual cell in a living organism.

Specifically, Chase's lab uses the roundworm C. elegans to explore how dopamine modulates the activities of specialized neurons. The worm is a useful model because it has only 302 neurons instead of billions in mammals. Despite its simplicity, the worm's basic neurotransmission mechanisms are also found in humans.

In the quest to identify genes that regulate dopamine signaling, the UMass Amherst researchers quickly recognized that dopamine acts through proteins used by other neurotransmitters in other nervous system cells. "So we couldn't use traditional genetic tools to study dopamine signaling. We needed to develop a new method to study protein function in individual cells in multicellular organisms," Chase notes.

The technique they developed takes advantage of nonsense-mediated decay (NMD), a surveillance mechanism present in all eukaryotic organisms. NMD destroys aberrant mRNA molecules that can arise naturally through mutation during transcription or mRNA processing.

"In our strategy, we replace the normal copy of a gene with a tagged version that targets the gene's mRNA for destruction by NMD," Chase explains. "We then remove NMD from all the organism's cells. Without NMD present, the replacement gene is expressed normally in all cells. We then knock down expression of the gene cell-specifically by restoring NMD activity only in cells we select."

He adds, "This cell-specific restoration of NMD activity is easy and can also be controlled in time. Thus, using NMD we can not only remove gene function in individual cell types, we can control exactly when gene function is removed in that cell type. This gives complete control of gene expression and allows one to investigate the function of any gene in any cell type at any time."

"With this very powerful new technique, now you can identify an individual gene and you can ask whether it plays a role in the behavior of interest. All these genes are expressed in our brains, so we are learning about all sorts of fascinating interactions in the worm and we can begin to translate the meanings to humans. Dopamine signaling is something you really can't study in the human brain very well, but with this approach we are having success."

To measure how much RNA is left in the animals after NMD is activated, microbiologist Aishwarya Swaminathan in John Lopes' group at UMass Amherst used quantitative polymerase chain reaction (PCR), an amplification technique, allowing the researchers to precisely measure the efficiency of the strategy.

Chase says, "It turns out that the NMD-mediated knockdown is super good, better than anything else available. And anybody can use it, it's straightforward molecular biology."


'/>"/>

Contact: Janet Lathrop
jlathrop@admin.umass.edu
413-545-0444
University of Massachusetts at Amherst
Source:Eurekalert

Related biology news :

1. UMass Amherst researchers reveal mechanism of novel biological electron transfer
2. UMass Medical School faculty elected to the American Association for the Advancement of Science
3. UMass Amherst biochemists developing tools to stop plague and other bacterial threats
4. UMass Medical School researchers discover a new role for RNAi
5. UMass Medical School scientist named 2012 Pew Latin-American Fellow in the Biomedical Sciences
6. UMass Amherst wildlife researcher photographs rare Sumatran rabbit
7. Chemical engineers at UMass Amherst find high-yield method of making xylene from biomass
8. NIST/UMass study finds evidence nanoparticles may increase plant DNA damage
9. Alnylam and UMass Medical School announce Tuschl I patent upheld in European opposition proceedings
10. Saint Louis University researchers discover a way to detect new viruses
11. OU researchers collaborate on $20 million NSF EPSCoR grant
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/16/2016)... , Dec. 16, 2016   IdentyTechSolutions ... Identity management products and solutions and a cutting-edge ... today that it is offering seamless, integrated solutions ... security entrance products. The solutions provide IdentyTech,s customers ... secure their facilities from crime and theft. ...
(Date:12/15/2016)... Canada and BADEN-BADEN, Germany , ... a leading global financial services provider, today announced an agreement ... passive behavioural biometrics, to join forces. The partnership will enable ... mitigation strategies in compliance with local data protection regulation. ... In order ...
(Date:12/15/2016)... LONDON , Dec. 15, 2016 /PRNewswire/ ... the driving experience, health wellness and wellbeing ... As one in three new passenger vehicles ... voice recognition, gesture recognition, heart beat monitoring, ... eyelid monitoring, facial monitoring, and pulse detection. ...
Breaking Biology News(10 mins):
(Date:1/19/2017)... , Jan. 18, 2017 BD (Becton, Dickinson and ... announced today that it will host a live webcast of its ... p.m. (ET). The webcast can be accessed from ... for replay through Tuesday, January 31, 2017. ... About BD BD is a ...
(Date:1/18/2017)... LINCOLN, Mass. , Jan. 18, 2017 /PRNewswire/ ... in applying mechanistic modeling to drug research and ... , PhD, Co-Founder, President, and CEO of Applied ... Group for Informatics and Modeling (BAGIM) Meeting on ... in Cambridge , MA.   Dr. ...
(Date:1/18/2017)... ... January 18, 2017 , ... Whitehouse ... expertise. Within Albany Molecular Research, Inc. (AMRI), the scientific staff dedicated to Extractables ... is planned for further growth in 2017. Extractable & Leachable evaluations have become ...
(Date:1/18/2017)... ... January 18, 2017 , ... DrugDev customers ... Clinical Ops Executives (Hyatt Regency Miami, January 24-26). DrugDev will join customers including ... issues such as trial performance metrics, patient enrollment diversity, protocol optimization, and global ...
Breaking Biology Technology: