Navigation Links
UMMS researchers uncover novel genetic pathway responsible for triggering vascular growth
Date:4/4/2010

WORCESTER, Mass. Most solid cancers can't grow beyond a limited size without an adequate blood supply and supporting vascular network. Because of this, cancer researchers have sought to understand how a tumor's vascular network developsand, more importantly, how to prevent it from developing: If the vascular network never develops, the theory goes, the tumor cannot grow.

Researchers at the University of Massachusetts Medical School have discovered a critical step for blood vessel growth in zebrafish embryos, providing new insight into how vascular systems develop and offering a potential therapeutic target for preventing tumor growth. UMMS Associate Professor of Molecular Medicine and the Program in Gene Function and Expression Nathan Lawson, PhD, and colleagues have identified a novel microRNA-mediated genetic pathway responsible for new blood vessel growth, or angiogenesis, in zebrafish embryos. Published online by Nature, Dr. Lawson's work provides new insights into how vascular systems use the forces of existing blood flow to initiate the growth of new vessels.

Focusing on the development of the fifth and sixth aortic arches in the zebrafish, Dr. Lawson describes how the forces exerted by blood flow on endothelial cells are a critical component for expressing a microRNA that triggers new vessel development. In the early stages of development, when blood flow is present in the aortic vessels, but the vascular linkages between the two arches have yet to be established, the stimulus provided by active blood flow leads to expression of an endothelial-cell specific microRNA (mir-126). In turn, this microRNA turns on vascular endothelial growth factor (VEGF), a chemical signal produced by surrounding cells that normally stimulates angiogenesis. Thus, blood flow allows the endothelial cells to respond to VEGF by growing into new blood vessels. However, when blood flow in the aortic arches was restricted, mir-126 failed to be expressed. In the absence of this microRNA, new blood vessels were unable to develop due to a block in VEGF signaling.

"We have known for over a hundred years that blood flow makes new vessels grow," said Dr. Lawson. "But we never really knew how cells in a growing vessel interpreted this signal. Our results show that miR-126 is the crucial switch that allows flow to turn on VEGF signaling and drive blood vessel growth. Since VEGF is crucial for tumor progression, not to mention a number of other vascular diseases, our findings may provide new ways to modify this pathway in these settings."

In his research, Dr. Lawson identifies the microRNA as a key facilitator in the integration of the physiological stimulus of blood flow with the activation of VEGF signaling, which guides angiogenesis, in endothelial cells. As a result, regulation of the microRNA, mir-126, could be a potential therapeutic target in limiting blood vessel development in solid cancers.


'/>"/>

Contact: Jim Fessenden
james.fessenden@umassmed.edu
508-856-2000
University of Massachusetts Medical School
Source:Eurekalert

Related biology news :

1. Longer-lasting flowers: Fresh ideas from ARS researchers
2. Researchers discover weak link in Alzheimers drug candidates
3. Researchers sequence DNA of peach tree at Clemson University
4. Researchers develop new method to detect melamine in milk
5. Researchers sequence DNA if peach tree at Clemson University
6. New brain nerve cells key to stress resilience, UT Southwestern researchers find
7. Researchers harness the power of plants to fight hemophilia
8. U of I researchers say foliar fungicides may not be the answer for hail-damaged corn
9. Researchers look at reducing yield loss for crops under stress
10. UT Southwestern researchers find clues to TB drug resistance
11. U of I researchers identify new soybean aphid biotype
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/28/2017)... , March 28, 2017 The ... Hardware (Camera, Monitors, Servers, Storage Devices), Software (Video Analytics, ... Region - Global Forecast to 2022", published by MarketsandMarkets, ... 2016 and is projected to reach USD 75.64 Billion ... and 2022. The base year considered for the study ...
(Date:3/24/2017)... 24, 2017 The Controller General of Immigration from ... Abdulla Algeen have received the prestigious international IAIR Award for the ... Continue Reading ... ... Controller Abdulla Algeen (small picture on the right) have received the IAIR ...
(Date:3/23/2017)... The report "Gesture Recognition and Touchless Sensing Market by Technology (Touch-based ... to 2022", published by MarketsandMarkets, the market is expected to be worth USD ... 2022. Continue Reading ... ... ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... and LAGUNA HILLS, Calif. , Oct. ... Cancer Research, London (ICR) and University ... SKY92, SkylineDx,s prognostic tool to risk-stratify patients with multiple myeloma ... MUK nine . The University of Leeds ... partly funded by Myeloma UK, and ICR will perform the ...
(Date:10/10/2017)... ... 2017 , ... San Diego-based team building and cooking events company, Lajollacooks4u, has ... The bold new look is part of a transformation to increase awareness, appeal to ... period. , It will also expand its service offering from its signature gourmet cooking ...
(Date:10/10/2017)... 10, 2017 International research firm Parks Associates announced ... at the TMA 2017 Annual Meeting , October 11 in ... residential home security market and how smart safety and security products impact ... Parks Associates: Smart Home ... "The residential security market has ...
(Date:10/9/2017)... DIEGO , Oct. 9, 2017  BioTech ... biological mechanism by which its ProCell stem cell ... critical limb ischemia.  The Company, demonstrated that treatment ... amount of limbs saved as compared to standard ... the molecule HGF resulted in reduction of therapeutic ...
Breaking Biology Technology: