Navigation Links
UMCES-led research team quantifies nutrient pollution reductions from urban stream restoration
Date:4/30/2008

A team of researchers led by University of Maryland Center for Environmental Science researcher Dr. Sujay Kaushal has been among the first able to quantify the amount of excess nitrogen removed from an urban stream during environmental restoration projects. This breakthrough will allow environmental managers to accurately assess the pollution reducing benefits of stormwater management and urban stream restoration, and could lead to new nitrogen reduction opportunities as public works managers make repairs to our nations aging urban infrastructure.

The key to expanding urban stream restoration efforts nationwide is being able to quantify the environmental benefits gained from those efforts, said UMCES Chesapeake Biological Laboratory researcher Dr. Sujay Kaushal. This research is opening the door to a new technology that has the potential to help improve water quality in our urban environment.

Using state-of-the-art techniques in a long-term study, Kaushals team injected stable isotope tracers into restored and unrestored sections of an urban stream, and measured how microbes in the streambanks naturally absorb nitrate and convert it into inert nitrogen gas. By analyzing those samples, the team was able to determine in-the-field nitrogen reductions by stream microbes through a process known as denitrification.

The research showed that stream restoration techniques that reconnected the banks to the stream doubled nitrogen removal rates by microbes, and reduced nitrogen levels in ground water by 40%, contributing to significantly lower nitrogen levels in the stream compared to unrestored conditions. Getting water out of the stream channel into denitrification hot spots in floodplain wetlands helped improve water quality.

Nationwide, there is a growing need to reduce the amount of nutrients flowing into our coastal waters and restoration efforts are booming in areas adjacent to large urban population centers with acute nitrogen pollution problems, such as near Chesapeake Bay, Long Island Sound, Puget Sound and the Gulf of Mexico.

Miles of streams will likely need to be restored in upcoming years as our nations failing infrastructure needs repair, Kaushal said. Much like our study sites, most of this aging infrastructure was built before current stormwater practices were adopted. When repairing the aging bridge supports and sewer lines that share urban streambeds, public works managers can easily make restoration design changes to improve stormwater management and also increase the streams ability to reduce nitrogen pollution flowing downstream.

The science of restoration ecology is still in its infancy, and a great deal of knowledge is needed to achieve objectives, Kausal added. Large-scale nitrogen reductions are needed along with improved stream restoration techniques that treat water flowing from polluted streams to coastal waters. The trick will be for scientists to figure out what works and what doesnt as we rebuild our cities for future generations.


'/>"/>

Contact: Christopher Conner
cconner@umces.edu
443-496-0095
University of Maryland Center for Environmental Science
Source:Eurekalert  

Related biology news :

1. USC School of Dentistry researchers uncover link between osteoporosis drugs and jaw infection
2. UCLA stem cell researchers create heart and blood cells from reprogrammed skin cells
3. Researchers discover molecular basis of a form of muscular dystrophy
4. Sunflower debate ends in Mexico, researchers say
5. Epigenetic research uncovers new targets for modification enzymes
6. Carnegie Mellon researchers urge development of low carbon electricity
7. In computer models and observations, researchers see potential for significant red tide season
8. Montana State researchers study spread of lake trout in Glacier National Park
9. European light research opens door for optical storage and computing
10. Medical College researchers find dinosaur clues in fat
11. Researchers discover gene for branchio-oculo-facial syndrome
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
UMCES-led research team quantifies nutrient pollution reductions from urban stream restoration
(Date:4/6/2017)... 2017 Forecasts by Product Type ... by End-Use (Transportation & Logistics, Government & Public Sector, ... Fossil Generation Facility, Nuclear Power), Industrial, Retail, Business Organisation ... Are you looking for a definitive report on the ... ...
(Date:4/3/2017)... , April 3, 2017  Data ... precision engineering platform, detected a statistically significant ... product prior to treatment and objective response ... the potential to predict whether cancer patients ... to treatment, as well as to improve ...
(Date:3/28/2017)... 2017 The report "Video Surveillance ... Servers, Storage Devices), Software (Video Analytics, VMS), and Service ... Forecast to 2022", published by MarketsandMarkets, the market was ... projected to reach USD 75.64 Billion by 2022, at ... base year considered for the study is 2016 and ...
Breaking Biology News(10 mins):
(Date:5/23/2017)... CA (PRWEB) , ... May 23, 2017 , ... ... publication of “Label-free isolation of prostate circulating tumor cells using Vortex microfluidic technology ... the result of a collaboration with Dr. Dino Di Carlo and Dr. Matthew Rettig ...
(Date:5/23/2017)... (PRWEB) , ... May 23, 2017 , ... ... Works as Vice President of Clinical Operations. She brings years of expertise ... Yaupon Therapeutics. From her professional foundation as a licensed occupational therapist, through a ...
(Date:5/23/2017)... ... , ... Cambridge Semantics , the leading provider of Big Data management ... and Expo in Boston May 23-25 with a featured speaker and solution demos ... Lake is also a finalist for the Best of Show award. , James LaPointe, ...
(Date:5/22/2017)... ... May 22, 2017 , ... Stratevi, a boutique firm ... the East Coast. It has opened an office in downtown Boston at 745 Atlantic ... it increasingly more important to generate evidence on the value they provide, not just ...
Breaking Biology Technology: