Navigation Links
UM scientists demonstrate role of RNA polymerase in gene transcription
Date:7/15/2010

In all organisms, RNA synthesis is carried out by proteins known as RNA polymerases (RNAPs) that transcribe the genetic information from DNA in a highly-regulated, multi-stage process. RNAP is the key enzyme involved in creating an equivalent RNA copy of a sequence of DNA. This transcription is the first step leading to gene expression. While the major steps in RNA synthesis have been known for several decades, scientists have only recently begun to decipher the detailed molecular steps of the complex transcription process.

In research published in the July 1, 2010 online Early Edition of the Proceedings of the National Academy of Sciences, University of Maryland biophysicists Devarajan (Dave) Thirumalai and Jie Chen, along with Rockefeller University collaborator Seth Darst, provide new insight into how the transcription process is initiated and the role that RNA polymerase plays in making this happen. Because the sequence, structure, and function of multi-subunit RNA polymerase are universally conserved in all organisms -- from bacteria to humans -- understanding the mechanisms of bacterial gene transcription is an important step in deciphering the role of genetics in disease.

"Previously, people didn't know the precise role of RNA polymerase in initiating transcription," explains Distinguished University Professor Dave Thirumalai (Department of Chemistry and Biochemistry and Institute for Physical Science and Technology), "but we showed that it plays an important role in forming the transcription bubble and in the process of bending the DNA to facilitate entry of DNA into the active site. That is the process we described computationally."

Their simulation of the initiation phase of transcription in bacterial RNA polymerase showed a three-step process. It begins when the RNA polymerase binds with transcription promoting regions of DNA. Through interactions with the RNA polymerase, the DNA helix then unwinds, forming an open "bubble" that allows the polymerase access to the exposed DNA sequence to begin transcription. The DNA molecule then bends to relieve stress produced by the opening.

Dr. Jie Chen, who conducted this research while a graduate student in the Chemical Physics program, simulated the transcription bubble formation using a Brownian dynamics-based computer model developed by Dr. Thirumalai's laboratory. "By creating this molecular movie, we can look at the dynamics of RNAP and simulate how it shifts from one structure to another structure," explains Chen. "Our simulation confirms experimental observations, and goes further to establish a clear and active role for RNA polymerase."

Dr. Thirumalai's research group is continuing to study RNA polymerase by looking at the second phase of the transcription process in bacteria and also through models of human transcription.


'/>"/>

Contact: Kelly Blake
kellyb@umd.edu
University of Maryland
Source:Eurekalert

Related biology news :

1. Scientists identify new potential biocontrol for skunk vine
2. A*STAR scientists score hat-trick against cancer
3. Scientists use computer algorithms to develop seasonal flu vaccines
4. Damon Runyon Cancer Research Foundation awards prestigious fellowships to 18 top young scientists
5. PNNL scientists win 4 R&D 100 awards for environment, biology, security technologies
6. Scientists describe 2 new species of fish from area engulfed by oil spill
7. Marine scientists return with rare creatures from the deep
8. Scientists find direct line from development to growth
9. UM School of Medicine scientists develop new strategy that may improve cognition
10. Honey as an antibiotic: Scientists identify a secret ingredient in honey that kills bacteria
11. NOAA-supported scientists predict larger than average Gulf dead zone
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/22/2016)... , June 22, 2016 On Monday, the ... to industry to share solutions for the Biometric Exit ... Customs and Border Protection (CBP), explains that CBP intends ... departing the United States , in ... to defeat imposters. Logo - http://photos.prnewswire.com/prnh/20160622/382209LOGO ...
(Date:6/15/2016)... , June 15, 2016 ... report titled "Gesture Recognition Market by Application Market - Global Industry ... - 2024". According to the report, the  global gesture ... in 2015 and is estimated to grow at ... billion by 2024.  Increasing application of ...
(Date:6/3/2016)... LONDON , June 3, 2016 /PRNewswire/ ... Transport Management) von Nepal ... ,Angebot und Lieferung hochsicherer geprägter Kennzeichen, einschließlich ... weltweit führend in der Produktion und Implementierung ... an der Ausschreibung im Januar teilgenommen, aber ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... 27, 2016  Global demand for enzymes is ... 2020 to $7.2 billion.  This market includes enzymes ... products, biofuel production, animal feed, and other markets) ... biocatalysts). Food and beverages will remain the largest ... consumption of products containing enzymes in developing regions.  ...
(Date:6/27/2016)... ... June 27, 2016 , ... Parallel 6 , ... announced today the Clinical Reach Virtual Patient Encounter CONSULT module which enables ... the physician and clinical trial team. , Using the CONSULT module, patients and physicians ...
(Date:6/27/2016)... 27, 2016   Ginkgo Bioworks , a leading ... was today awarded as one of the World ... world,s most innovative companies. Ginkgo Bioworks is engineering ... real world in the nutrition, health and consumer ... with customers including Fortune 500 companies to design ...
(Date:6/24/2016)... NC (PRWEB) , ... June 24, 2016 , ... Researchers ... the most commonly-identified miRNAs in people with peritoneal or pleural mesothelioma. Their findings are ... to read it now. , Diagnostic biomarkers are signposts in the blood, lung ...
Breaking Biology Technology: