Navigation Links
UH engineers finding new ways to fight malaria with DOD grant
Date:10/13/2011

HOUSTON, Oct. 13, 2011 Malaria has been one of the world's biggest killers for as long as records have been kept. With resistance to existing antimalarial drugs on the rise, there is a renewed push to find different ways to fight it. Two University of Houston (UH) engineers have stepped up to the plate to answer the call.

Jeffery Rimer and Peter Vekilov, both with the department of chemical and biomolecular engineering, recently were awarded a grant from the U.S. Department of Defense (DOD) to create an entirely new platform for developing antimalarial drugs. Like existing antimalarial drugs, this new platform will target plasmodium, which is the parasite that causes malaria, by utilizing a quirk in the infection process.

Typically introduced into hosts through a mosquito bite, plasmodium enters a host's red blood cells where it consumes the hemoglobin by breaking it down. However, one subunit of hemoglobin the parasite cannot use is heme, which is the part of the blood that helps transport oxygen to the other parts of the body. Left alone, heme is highly toxic toxic enough, in fact, to kill the parasite and prevent an infection from taking hold.

Unfortunately, as the parasite has evolved, it segregates the heme into little crystals. If the heme is sequestered in crystals, it can't kill the parasite. Existing antimalarial medications presumably work by preventing the formation and growth of heme crystals. As a result, heme molecules released by hemoglobin consumption usually are able to kill the parasite. However, the effectiveness of these drugs has begun to wane.

Since the precise nature of how these drugs prevent crystal formation is unknown, Vekilov and Rimer will work to uncover the process of heme crystal formation and then determine what kind of molecules could inhibit crystallization. Vekilov believes that heme molecules attach to crystals at kinks that are sites on the crystal surface favorable for the addition of new heme molecules. If this is, in fact, how heme crystals grow, the team will design "tailored inhibitors" that prevent the growth from occurring.

"A tailored inhibitor mimics the crystal building unit or units, which in this case is heme," Rimer said. "You want to design inhibitors with an affinity for binding to crystal surfaces. Certain parts of the inhibitor molecule then block adjacent binding sites. So, the inhibitors we plan to design will physically block the kinks and disrupt heme addition."

While Vekilov and Rimer note that this research won't likely result in the discovery of specific molecules that could be developed into medications, they do say it will provide a deeper understanding of the type of molecules that could be the basis of new drugs. Helping drug developers understand how these medications could work would allow them to create new antimalarial drugs in a more logical and cost-effective manner.

Currently, say the researchers, pharmaceutical companies screen libraries of molecules to identify drug targets. This, they say, is a combinatorial approach that employs an exhaustive, trial-and-error method. The UH team is working to replace this impractical process with techniques to speed up drug development. If Rimer and Vekilov can develop a better understanding of how these molecules bind to the crystal surface, researchers could start thinking about designing antimalarial drugs in a much more rational manner.

The two-year $150,000 seed grant will be administered by the Alliance for NanoHealth.


'/>"/>

Contact: Lisa Merkl
lkmerkl@uh.edu
713-743-8192
University of Houston
Source:Eurekalert  

Related biology news :

1. Caltech engineers build smart petri dish
2. Stanford engineers redefine how the brain plans movement
3. TREW Marketing Introduces Smart Marketing for Engineers, a Free Guidebook for Small Businesses Targeting Technical Audiences
4. ASU bioengineers will expand work to solve cardiovascular health challenges
5. Virginia Tech mechanical engineers win measurement science best paper award
6. Penn researchers help nanoscale engineers choose self-assembling proteins
7. Columbia engineers develop new method to diagnose heart arrhythmias
8. Columbia engineers patch a heart
9. Chemical engineers at UCSB design molecular probe to study disease
10. Young Caltech engineers recognized for innovative work in disease diagnostic technologies
11. UCLA engineers demonstrate use of proteins as raw material for biofuels, biorefining
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
UH engineers finding new ways to fight malaria with DOD grant
(Date:11/16/2016)... Calif. , Nov. 16, 2016 ... user experience and security for consumer electronics, and ... the financial and retail industry, today announced a ... and convenient way to authenticate users of mobile ... Sensory,s TrulySecure™ software which requires no ...
(Date:11/14/2016)... Fla., Nov. 14, 2016  xG Technology, Inc. ("xG" ... providing critical wireless communications for use in challenging operating ... September 30, 2016. Management will hold a conference call ... 5:00 p.m. Eastern Time (details below). Key ... a $16 million binding agreement to acquire Vislink Communication ...
(Date:6/22/2016)... 2016  The American College of Medical Genetics and Genomics ... as one of the fastest-growing trade shows during the ... Bellagio in Las Vegas . ... growth in each of the following categories: net square feet ... of attendees. The 2015 ACMG Annual Meeting was ranked 23 ...
Breaking Biology News(10 mins):
(Date:12/5/2016)... , Dec 5, 2016 Research ... report "DNA Sequencing - Technologies, Markets and Companies" ... ... report briefly reviews basics of human genome variations, development of ... are described as well as companies developing them. Various applications ...
(Date:12/4/2016)... , Dec. 3, 2016  In five studies ... Hematology (ASH) Annual Meeting and Exposition in ... engineering methods to improve the delivery of life-saving treatments ... new methods are designed to carry therapies directly to ... most, which could provide a substantial advantage over traditional, ...
(Date:12/2/2016)... 2016  The Multiple Myeloma Research Foundation (MMRF) today ... Study SM —the largest and most comprehensive study driving ... myeloma—will be presented at the 58 th American ... San Diego from December 3-6. ... as well as identify pathways and targets for new ...
(Date:12/2/2016)... ... ... ACEA Biosciences, Inc. announced today that it will be presenting updated efficacy ... Conference on Lung Cancer 2016, taking place in Vienna, Austria December 3rd-8th. , ... AC0010 in patients with advanced non-small cell lung cancer harboring the EGFR T790M resistance ...
Breaking Biology Technology: