Navigation Links
UGA researchers use patented SERS technique to rapidly, accurately detect rotavirus strain
Date:5/13/2010

Athens, Ga. Using nanotechnology and a patented signal enhancing technique developed at the University of Georgia, UGA researchers have discovered a rapid, sensitive and cost-effective method to detect and identify a number of rotavirus strains and genotypes in less than one minute with greater than 96 percent accuracy.

In their study, Ralph A. Tripp and Jeremy D. Driskell, researchers in the College of Veterinary Medicine's department of infectious diseases, and Yiping Zhao and Richard Dluhy, researchers in the Franklin College of Arts and Sciences departments of physics and chemistry, utilized surface enhanced Raman scattering, or SERS, to detect and quantify Group A rotaviruses.

Group A rotaviruses are the leading cause of severe gastroenteritis in infants and young children, infecting approximately 130 million children annually. Rotavirus infections are responsible for approximately 2 million hospitalizations and more than 500,000 deaths each year, and are particularly burdensome on health care resources in developing countries. Clinical diagnostic tests currently used to detect rotavirus do not provide information on the genotypes, which is essential for aiding public health officials in monitoring epidemics, identifying novel strains and controlling disease.

Tripp and Driskell worked with the most commonly identified strains of rotavirus, provided by Carl D. Kirkwood of the Murdoch Childrens Research Institute, at the Royal Children's Hospital in Parkville, Australia, to show that SERS can detect and identify numerous virus strains and genotypes in less than 30 seconds, without the need to amplify the analyte for detection. Their technique requires no or minimal specimen preparation for analysis and uses minimal volumes of analyte.

"Nanotechnology has provided a considerable advance in diagnostic and prognostic capabilities," noted Tripp. "The technology strengthens and expands current diagnostic applications by providing a means to enhance existing technology for novel applications such as SERS detection of viruses. The field of diagnostics and biosensing has been pushed dramatically forward by our ability to now amplify and detect the molecular fingerprints of pathogens as opposed to amplifying the pathogens for detection."

The findings from the UGA research team are important as most enteric viruses produce diseases that are not readily distinct from other pathogens and diagnostics are generally limited to attempts at viral culture, antibody-mediated antigen detection and polymerase chain reaction. These methods are cumbersome, often have limited breadth and sensitivity in detection and/or offer limited information on genotype.

SERS works by measuring the change in frequency of a near-infrared laser as it scatters off viral nucleic acid and protein components. This change in frequency, named the Raman shift for the scientist who discovered it in 1928, is as distinct as a fingerprint.


'/>"/>

Contact: Kat Gilmore
kygilmor@uga.edu
706-543-5485
University of Georgia
Source:Eurekalert

Related biology news :

1. 700 international researchers gather for Great Lakes Research Conference
2. Biofuel chemistry more complex than petroleum, say Sandia and Lawrence Livermore researchers
3. Researchers share insights into RNA
4. UT Southwestern researchers find mechanism that may stop E. coli from developing in cattle
5. A new effective strategy for treating tobacco addiction was developed by researchers from the CAS
6. Researchers offer first proof that chemicals from seaweeds damage coral on contact
7. UNC researchers receive $100,000 Grand Challenges Exploration Grant to develop male contraceptive
8. Rensselaer researchers to send bacteria into orbit aboard space shuttle Atlantis
9. Researchers discover metabolic vulnerability in TB and potential drug target
10. Researchers use entire islands in the Bahamas to test survival of the fittest
11. Researchers discover genetic link between both types of ALS
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/22/2017)... VILNIUS, Lithuania , March 21, 2017 /PRNewswire/ ... identification and object recognition technologies, today announced the ... development kit (SDK), which provides improved facial recognition ... safety cameras on a single computer. The new ... algorithms to improve accuracy, and it utilizes a ...
(Date:3/20/2017)... At this year,s CeBIT Chancellor Dr. Angela Merkel visited the ... the DERMALOG stand together with the Japanese Prime Minster Shinzo Abe. ... largest German biometrics company the two government leaders could see the three ... as DERMALOGĀ“s multi-biometrics system.   Continue Reading ... ...
(Date:3/13/2017)... 2017 Future of security: Biometric Face Matching software  ... ... DERMALOGs Face Matching enables to match face pictures against each other or ... individuals. (PRNewsFoto/Dermalog Identification Systems) ... "Face Matching" is the fastest software for biometric Face Matching on the market. ...
Breaking Biology News(10 mins):
(Date:4/19/2017)... ... ... Nobilis Therapeutics Announces Completion of Landmark NBTX-001 Clinical Trial in ... Upcoming Post Traumatic Stress Disorder Trial , Nobilis Therapeutics, Inc. announced today ... its NBTX-001, a xenon-based therapeutic in the treatment of Panic Disorder. , ...
(Date:4/19/2017)... ... April 19, 2017 , ... WHO: Peggy ... infections through education and advocacy. Founded in 2010 in memory of a single-parent ... the foundation has become the most-consulted source for patient-focused information on C. diff ...
(Date:4/19/2017)... and PUNE, India , April 19, 2017 /PRNewswire/ ... "Membrane Microfiltration Market: Global Opportunity Analysis and Industry Forecast, 2014-2022 ," the global ... $12,858 million by 2022, registering a CAGR of 9.6% from 2016 to 2022. ... ... ...
(Date:4/19/2017)... WESTMINSTER, Colo. , April 19, 2017 ... specialty finance firm that provides senior debt to ... the closing of a $20 million senior secured ... orthobiologics company engaged in the development and commercialization ... of orthopedic injuries. Cerapedics, lead product, ...
Breaking Biology Technology: