Navigation Links
UGA discovery may allow scientists to make fuel from CO2 in the atmosphere
Date:3/26/2013

Athens, Ga. Excess carbon dioxide in the Earth's atmosphere created by the widespread burning of fossil fuels is the major driving force of global climate change, and researchers the world over are looking for new ways to generate power that leaves a smaller carbon footprint.

Now, researchers at the University of Georgia have found a way to transform the carbon dioxide trapped in the atmosphere into useful industrial products. Their discovery may soon lead to the creation of biofuels made directly from the carbon dioxide in the air that is responsible for trapping the sun's rays and raising global temperatures.

"Basically, what we have done is create a microorganism that does with carbon dioxide exactly what plants doabsorb it and generate something useful," said Michael Adams, member of UGA's Bioenergy Systems Research Institute, Georgia Power professor of biotechnology and Distinguished Research Professor of biochemistry and molecular biology in the Franklin College of Arts and Sciences.

During the process of photosynthesis, plants use sunlight to transform water and carbon dioxide into sugars that the plants use for energy, much like humans burn calories from food.

These sugars can be fermented into fuels like ethanol, but it has proven extraordinarily difficult to efficiently extract the sugars, which are locked away inside the plant's complex cell walls.

"What this discovery means is that we can remove plants as the middleman," said Adams, who is co-author of the study detailing their results published March 25 in the early online edition of the Proceedings of the National Academies of Sciences. "We can take carbon dioxide directly from the atmosphere and turn it into useful products like fuels and chemicals without having to go through the inefficient process of growing plants and extracting sugars from biomass."

The process is made possible by a unique microorganism called Pyrococcus furiosus, or "rushing fireball," which thrives by feeding on carbohydrates in the super-heated ocean waters near geothermal vents. By manipulating the organism's genetic material, Adams and his colleagues created a kind of P. furiosus that is capable of feeding at much lower temperatures on carbon dioxide.

The research team then used hydrogen gas to create a chemical reaction in the microorganism that incorporates carbon dioxide into 3-hydroxypropionic acid, a common industrial chemical used to make acrylics and many other products.

With other genetic manipulations of this new strain of P. furiosus, Adams and his colleagues could create a version that generates a host of other useful industrial products, including fuel, from carbon dioxide.

When the fuel created through the P. furiosus process is burned, it releases the same amount of carbon dioxide used to create it, effectively making it carbon neutral, and a much cleaner alternative to gasoline, coal and oil.

"This is an important first step that has great promise as an efficient and cost-effective method of producing fuels," Adams said. "In the future we will refine the process and begin testing it on larger scales."


'/>"/>

Contact: Michael W.W. Adams
adams@bmb.uga.edu
706-542-2060
University of Georgia
Source:Eurekalert

Related biology news :

1. Discovery of a molecule that initiates maturation of mammalian eggs can lead to more IVF pregnancies
2. Annual Drug Discovery Conferences Being Held in Boston MA, Spring 2012
3. Discovery provides blueprint for new drugs that can inhibit hepatitis C virus
4. Unexpected discovery reveals a new mechanism for how the cerebellum extracts signal from noise
5. Discovery offers insight into treating viral stomach flu
6. Breast cancer risk gene discovery fast tracked by new technology
7. Tales from the crypt lead researchers to cancer discovery
8. New discovery may lead to effective prevention and treatment of graft-versus-host dsease
9. Stomata development in plants unraveled -- a valuable discovery for environmental research
10. Discovery reveals chromosomes organize into yarns
11. Bacteria discovery could lead to antibiotics alternatives
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/16/2016)... The global Biometric ... USD 1.83 billion by 2024, according to a ... proliferation and increasing demand in commercial buildings, consumer ... the market growth.      (Logo: ... of advanced multimodal techniques for biometric authentication and ...
(Date:6/9/2016)... June 9, 2016  Perkotek an innovation leader in attendance control systems is proud ... work hours, for employers to make sure the right employees are actually signing in, ... ... ... ...
(Date:6/7/2016)...  Syngrafii Inc. and San Antonio Credit Union ... integrating Syngrafii,s patented LongPen™ eSignature "Wet" solution into ... result in greater convenience for SACU members and ... existing document workflow and compliance requirements. ... Highlights: ...
Breaking Biology News(10 mins):
(Date:12/2/2016)... ... December 01, 2016 , ... Orthogonal, ... on their recent FDA Class II 510(k) clearance for their flagship medical device, ... commercializing remote cardiac monitoring devices that rely on cloth-based nanosensors. While other companies ...
(Date:12/2/2016)... leader in rapid infectious disease tests, introduced the Company,s newest product, the INSTI HIV ... http://photos.prnewswire.com/prnh/20161201/444905 ) Continue Reading ... ... , bioLytical was invited by the Clinton Health ... Self Test to 350 pharmacy representatives in Nairobi and Mombasa, ...
(Date:11/30/2016)... , Nov. 30, 2016 Biotest Pharmaceuticals ... is pleased to announce the addition of its newest ... Kearney, Nebraska . The 15,200 square foot ... November 29th, 2016 and brings the total number of ... Ileana Carlisle , BPC,s Chief Executive Officer said ...
(Date:11/30/2016)... , 30. November 2016   Merck ... heute die Unterzeichnung einer Reihe von Vereinbarungen ... wird Evotec AG Screeningleistungen für Mercks Palette ... Der Zugriff auf diese Bibliotheken in Kombination ... einen schnelleren Weg zur Ermittlung und Erforschung ...
Breaking Biology Technology: