Navigation Links
UF scientists discover compound that could lead to new blood pressure drugs
Date:5/1/2008

GAINESVILLE, Fla. University of Florida researchers have identified a drug compound that dramatically lowers blood pressure, improves heart function and in a remarkable finding prevents damage to the heart and kidneys in rats with persistent hypertension.

The findings, which appear in todays (May 1) edition of the American Heart Association journal Hypertension, could lead to a new class of antihypertensive drugs designed to address two major problems associated with cardiovascular disease: high blood pressure and the tissue damage associated with it, known as fibrosis.

When people have heart attacks (or suffer from hypertension) the blood vessels get more rigid, said study author David Ostrov, Ph.D., an assistant professor in the UF College of Medicines department of pathology, immunology and laboratory medicine. We discovered a compound that reverses the fibrosis that makes the blood vessels more rigid.

The American Heart Association estimates that 72 million people in the United States have high blood pressure, a major risk factor for stroke, heart attack and death.

Angiotensin-converting enzyme plays a key role in the development of high blood pressure. It produces angiotensin II, a potent hormone that triggers the condition and contributes to the development of cardiovascular disease by constricting blood vessels, causing blood pressure to rise. Thats why millions of Americans with hypertension and cardiovascular disease take ACE inhibitors. But these drugs have limited capacity to repair heart function and to reverse tissue damage.

In contrast, the enzyme ACE2 not only lowers levels of angiotensin II but also converts it to a hormone that helps protect the cardiovascular system.

Only recently has it come to be appreciated that ACE and ACE2 play a very important role in balancing the activity of the other one to maintain normal blood pressure, Ostrov said. They work in harmony.

Hypothesizing that activating ACE2 could be beneficial, UF scientists set out to discover a compound that enhances the enzymes activity.

Researchers used one of the worlds most powerful supercomputers to process 140,000 prospective drug compounds in a matter of weeks. The computer predicted which molecules would be most likely to enhance the activity of ACE2, rotating them in thousands of different orientations to see how they would bind to certain pockets on the enzymes surface.

This project had a very small likelihood of succeeding because its much easier to inhibit activity rather than to enhance it. By analogy, its easier to break something than to build it, Ostrov said. If you consider the structure of an enzymes active site its easy to see that if you plug up the active site its not going to work. But how can one make the enzyme actually work better" This seemed to be a very significant challenge we were probably not likely to overcome. We tried anyway.

And it worked.

That in itself is a significant accomplishment because no one has ever specifically identified a compound that enhances the activity of an enzyme using a rational structure-based approach, he said. In other words, no one has ever done this before on purpose. People have discovered molecules that enhance the activity of enzymes by trial and error, but no group has ever done it in a specifically pointed way like this.

Ostrov said the enzyme exists in two forms: like a Pac-Man with a mouth that has chomped closed, and like a Pac-Man with a mouth that remains wide open. The molecule that worked best fit in a structural pocket in the enzymes open conformation.

So in other words, stabilizing the open conformation may be the reason why we enhance the activity of the enzyme, he said.

After hitting on the lead compound, UF researchers then tested it in hypertensive rats that had developed fibrosis of the heart and kidney. The animals received the drug for two weeks. Tissue samples from treated animals revealed a significant decrease in fibrosis of the heart, kidney and blood vessels, said Ostrov, who described the findings as striking and reproducible.

The study was funded by grants from the National Institutes of Health and the American Heart Association and was a collaborative effort of the UF colleges of Medicine, Pharmacy and Liberal Arts and Sciences. Researchers also included Mohan Raizada, Ph.D., distinguished professor of physiology and functional genomics, Michael J. Katovich, Ph.D., a professor of pharmacodynamics, and Ronald K. Castellano, an assistant professor of chemistry, among others.

Early results also show the compound inhibits inflammation, which has significant implications for a number of human diseases, including autoimmune diseases such as type 1 diabetes and rheumatoid arthritis as well as other diseases involving fibrosis, such as Alzheimers, Ostrov said.

Additional research will continue to explore the compounds effectiveness in animals and humans.


'/>"/>

Contact: Melanie Fridl Ross
ufcardiac@aol.com
352-690-7051
University of Florida
Source:Eurekalert

Related biology news :

1. UIC scientists discover how some bacteria survive antibiotics
2. Scientists aim to boost world energy supplies -- with microbes!
3. Scientists determine drug target for the most potent botulinum neurotoxin
4. Scientists make chemical cousin of DNA for use as new nanotechnology building block
5. Scientists find stem cells for the first time in the pituitary
6. Brown scientists say biodiversity is crucial to ecosystem productivity
7. Scientists urged to make a stand on climate change
8. Scientists clarify a mechanism of epigenetic inheritance
9. Scientists to explore global change-public health connection
10. Scientists test device to track medication adherence in patients with HIV/AIDS
11. Scientists discover how nanocluster contaminants increase risk of spreading
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/25/2016)... SEATTLE , Jan. 25, 2016  Glencoe Software, ... biotech, pharma and publication industries, will provide the data ... Phenotypic Screening Centre (NPSC). ... Phenotypic analysis ... even whole organisms, allowing comparisons between states such as ...
(Date:1/20/2016)...   MedNet Solutions , an innovative SaaS-based eClinical ... research, is pleased to announce the attainment of record-setting ... result of the company,s laser focus on (and growing ... it,s comprehensive, easy-to-use and highly affordable cloud-based technology platform. ... MedNet growth achievements in 2015 include: , ...
(Date:1/13/2016)... January 13, 2016 ... addition of the  "India Biometrics Authentication ... Forecast (2015-2020)"  report to their ... has announced the addition of the  ... - Estimation & Forecast (2015-2020)" ...
Breaking Biology News(10 mins):
(Date:2/10/2016)... MONTREAL , Febr. 10, 2016 /PRNewswire/ - BioAmber Inc. ... is pleased to announce that Mitsui & Co. Ltd., ... bio-based succinic acid plant, is investing an additional CDN$25 ... equity, increasing its stake from 30% to 40%.  Mitsui ... of bio-succinic acid produced in Sarnia ...
(Date:2/10/2016)... ... February 10, 2016 , ... ... announced that it has joined the Human Vaccines Project, a public-private partnership ... and cancer. , The Human Vaccines Project brings together leading pharmaceutical ...
(Date:2/10/2016)... ... 10, 2016 , ... HOLLOWAY AMERICA, a leading custom stainless ... Mountain Chapter 21st Annual Vendor Exhibition on Thursday, February 18, 2016. The Rocky ... its annual event, which will run from 3:00 p.m. - 8:30 p.m. at ...
(Date:2/10/2016)... ... February 10, 2016 , ... ... has announced a new agreement with Singapore-based Global Stem Cells Network (GSCN) and ... Philippines, Thailand and Singapore in the latest adipose and bone marrow therapies. ...
Breaking Biology Technology: