Navigation Links
UF scientists discover compound that could lead to new blood pressure drugs
Date:5/1/2008

GAINESVILLE, Fla. University of Florida researchers have identified a drug compound that dramatically lowers blood pressure, improves heart function and in a remarkable finding prevents damage to the heart and kidneys in rats with persistent hypertension.

The findings, which appear in todays (May 1) edition of the American Heart Association journal Hypertension, could lead to a new class of antihypertensive drugs designed to address two major problems associated with cardiovascular disease: high blood pressure and the tissue damage associated with it, known as fibrosis.

When people have heart attacks (or suffer from hypertension) the blood vessels get more rigid, said study author David Ostrov, Ph.D., an assistant professor in the UF College of Medicines department of pathology, immunology and laboratory medicine. We discovered a compound that reverses the fibrosis that makes the blood vessels more rigid.

The American Heart Association estimates that 72 million people in the United States have high blood pressure, a major risk factor for stroke, heart attack and death.

Angiotensin-converting enzyme plays a key role in the development of high blood pressure. It produces angiotensin II, a potent hormone that triggers the condition and contributes to the development of cardiovascular disease by constricting blood vessels, causing blood pressure to rise. Thats why millions of Americans with hypertension and cardiovascular disease take ACE inhibitors. But these drugs have limited capacity to repair heart function and to reverse tissue damage.

In contrast, the enzyme ACE2 not only lowers levels of angiotensin II but also converts it to a hormone that helps protect the cardiovascular system.

Only recently has it come to be appreciated that ACE and ACE2 play a very important role in balancing the activity of the other one to maintain normal blood pressure, Ostrov said. They work in harmony.

Hypothesizing that activating ACE2 could be beneficial, UF scientists set out to discover a compound that enhances the enzymes activity.

Researchers used one of the worlds most powerful supercomputers to process 140,000 prospective drug compounds in a matter of weeks. The computer predicted which molecules would be most likely to enhance the activity of ACE2, rotating them in thousands of different orientations to see how they would bind to certain pockets on the enzymes surface.

This project had a very small likelihood of succeeding because its much easier to inhibit activity rather than to enhance it. By analogy, its easier to break something than to build it, Ostrov said. If you consider the structure of an enzymes active site its easy to see that if you plug up the active site its not going to work. But how can one make the enzyme actually work better" This seemed to be a very significant challenge we were probably not likely to overcome. We tried anyway.

And it worked.

That in itself is a significant accomplishment because no one has ever specifically identified a compound that enhances the activity of an enzyme using a rational structure-based approach, he said. In other words, no one has ever done this before on purpose. People have discovered molecules that enhance the activity of enzymes by trial and error, but no group has ever done it in a specifically pointed way like this.

Ostrov said the enzyme exists in two forms: like a Pac-Man with a mouth that has chomped closed, and like a Pac-Man with a mouth that remains wide open. The molecule that worked best fit in a structural pocket in the enzymes open conformation.

So in other words, stabilizing the open conformation may be the reason why we enhance the activity of the enzyme, he said.

After hitting on the lead compound, UF researchers then tested it in hypertensive rats that had developed fibrosis of the heart and kidney. The animals received the drug for two weeks. Tissue samples from treated animals revealed a significant decrease in fibrosis of the heart, kidney and blood vessels, said Ostrov, who described the findings as striking and reproducible.

The study was funded by grants from the National Institutes of Health and the American Heart Association and was a collaborative effort of the UF colleges of Medicine, Pharmacy and Liberal Arts and Sciences. Researchers also included Mohan Raizada, Ph.D., distinguished professor of physiology and functional genomics, Michael J. Katovich, Ph.D., a professor of pharmacodynamics, and Ronald K. Castellano, an assistant professor of chemistry, among others.

Early results also show the compound inhibits inflammation, which has significant implications for a number of human diseases, including autoimmune diseases such as type 1 diabetes and rheumatoid arthritis as well as other diseases involving fibrosis, such as Alzheimers, Ostrov said.

Additional research will continue to explore the compounds effectiveness in animals and humans.


'/>"/>

Contact: Melanie Fridl Ross
ufcardiac@aol.com
352-690-7051
University of Florida
Source:Eurekalert

Related biology news :

1. UIC scientists discover how some bacteria survive antibiotics
2. Scientists aim to boost world energy supplies -- with microbes!
3. Scientists determine drug target for the most potent botulinum neurotoxin
4. Scientists make chemical cousin of DNA for use as new nanotechnology building block
5. Scientists find stem cells for the first time in the pituitary
6. Brown scientists say biodiversity is crucial to ecosystem productivity
7. Scientists urged to make a stand on climate change
8. Scientists clarify a mechanism of epigenetic inheritance
9. Scientists to explore global change-public health connection
10. Scientists test device to track medication adherence in patients with HIV/AIDS
11. Scientists discover how nanocluster contaminants increase risk of spreading
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/9/2016)... , UAE, May 9, 2016 ... when it comes to expanding freedom for high net ... Even in today,s globally connected world, there is ... conferencing system could ever duplicate sealing your deal with ... obtaining second passports by taking advantage of citizenship via ...
(Date:4/26/2016)... BANGALORE, India and LONDON ... Infosys Finacle, part of EdgeVerve Systems, a ... ), and Onegini today announced a partnership to ... banking solutions.      (Logo: http://photos.prnewswire.com/prnh/20151104/283829LOGO ... banks to provide their customers enhanced security to ...
(Date:4/15/2016)... April 15, 2016 Research ... Gait Biometrics Market 2016-2020,"  report to their offering.  ... ) , ,The global gait biometrics market is ... during the period 2016-2020. Gait analysis ... can be used to compute factors that are ...
Breaking Biology News(10 mins):
(Date:5/27/2016)... ... May 27, 2016 , ... Doctors in Italy, Japan, the UK and the ... associated protein (BAP1) gene and its link to malignant mesothelioma. Surviving Mesothelioma has just ... the full article now. , The studies analyzed for the new report included ...
(Date:5/27/2016)... , May 27, 2016 At present, ... playing in this space know that volatility is what makes ... companies on ActiveWallSt.com: Synta Pharmaceuticals Corp. (NASDAQ: SNTA ... Inc. (NASDAQ: LPTN ), and Heat Biologics Inc. ... access to the technical alerts for these stocks at: ...
(Date:5/26/2016)... Jersey and READING, England ... Indegene ( http://www.indegene.com ), a leading global ... life science, pharmaceutical and healthcare organisations and TranScrip ... innovative scientific support throughout the product lifecycle, today ... the launch of IntraScience.      (Logo: ...
(Date:5/26/2016)... , May 26, 2016 Despite the ... value in this space. Today,s pre-market research on ActiveWallSt.com directs ... Health Inc. (NASDAQ: RDUS ), Cerus Corp. (NASDAQ: ... ARWR ), and Five Prime Therapeutics Inc. (NASDAQ: ... briefings at: http://www.activewallst.com/ On ...
Breaking Biology Technology: