Navigation Links
UD-developed smart gels deliver medicine on demand
Date:1/15/2014

Researchers at the University of Delaware have developed a "smart" hydrogel that can deliver medicine on demand, in response to mechanical force.

Over the past few decades, smart hydrogels have been created that respond to pH, temperature, DNA, light and other stimuli.

"The idea of a smart hydrogel that can release medicine over time is not new," said Xinqiao Jia, UD professor of materials science and engineering and biomedical engineering. "What's new is our ability to have medicine released in response to force a major challenge for people with osteoarthritis and other 'wear and tear' injuries that compromise a person's ability to perform everyday activities."

Osteoarthritis is a chronic condition that affects nearly 27 million Americans, according to the Arthritis Foundation. It is characterized by soreness or stiffness in joints following inactivity or overuse, and pain that worsens after activity or as the day progresses.

The researchers believe the hyaluronic acid-based hydrogels developed at UD can be injected into an injury site such as a knee or hip joint and that as a patient walks or participates in therapeutic exercise, the walking motion will cause accelerated release of the drug, reducing inflammation and pain.

Testing under laboratory conditions has confirmed that as the UD-developed hydrogel is compressed, the encapsulated drugs are discharged into the surrounding environment. Preliminary cell testing confirmed the anti-inflammatory activity of the released drug molecules.

Now the team is collaborating with colleagues at Rush University in Chicago to test the hydrogels in animal models. Early results indicate that the gel is biocompatible, which Jia said is because hyaluronic acid is a naturally occurring substance in cartilage, making it more readily accepted in the body.

She also said the hydrogel could help with a variety of conditions beyond osteoarthritis, including ligament tears or other injury areas under high tension.

"I have even considered whether we can leverage this hydrogel platform to reduce inflammation in patients with vocal fold disorders," Jia said.

UD collaborators on the project include Darrin Pochan, professor of materials science and engineering; Chandran Sabanayagam, an associate scientist at the Delaware Biotechnology Institute; and Longxi Xiao and Zhixiang Tong, Jia's former students, and Yingchao Chen, a current student.

An expert in microscopy and characterization techniques, Sabanayagam's role was to understand exactly how the gels behave under mechanical force and how the drug diffuses under pressure important considerations in treatment efficacy.

The research team is now investigating whether future iterations of the hydrogel can be imbued with properties that would stimulate tissue regeneration and repair.


'/>"/>

Contact: Andrea Boyle Tippet
aboyle@udel.edu
302-831-1421
University of Delaware
Source:Eurekalert  

Related biology news :

1. Programming smart molecules
2. Keep Track of Your Children & Pets With TRAX - the New Smart GPS-Tracker
3. Bait research focused on outsmarting destructive beetle
4. Social networks make us smarter
5. Fujitsu Launches Four Smartphones and Two Tablet PCs With FPC Embedded Fingerprint Technology for the Japanese Market
6. National Robotics Initiative grant to create smarter surgical robots
7. Improved smartphone microscope brings single-virus detection to remote locations
8. Researchers use smart phone photography to diagnose eye disease
9. FPC Awarded new Smartphone DW From Existing Prominent Asian OEM Customer for Launch With Leading US Operator
10. SmartMove, Inc. receives $200,000 grant from the Colorado Office of Economic Development and International Trade
11. Frost & Sullivan: Moving the Smart Cities Idea from Concept to Reality
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
UD-developed smart gels deliver medicine on demand
(Date:4/11/2017)... 11, 2017 No two people are ... the New York University Tandon School of Engineering ... found that partial similarities between prints are common ... mobile phones and other electronic devices can be ... vulnerability lies in the fact that fingerprint-based authentication ...
(Date:4/5/2017)... -- The Allen Institute for Cell Science today announces the ... and dynamic digital window into the human cell. The ... of deep learning to create predictive models of cell ... growing suite of powerful tools. The Allen Cell Explorer ... available resources created and shared by the Allen Institute ...
(Date:4/4/2017)... 4, 2017   EyeLock LLC , a leader ... United States Patent and Trademark Office (USPTO) has issued ... linking of an iris image with a face image ... the company,s 45 th issued patent. ... timely given the multi-modal biometric capabilities that have recently ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... and LAGUNA HILLS, Calif. , Oct. 11, ... Research, London (ICR) and University of ... SkylineDx,s prognostic tool to risk-stratify patients with multiple myeloma (MM), ... nine . The University of Leeds ... funded by Myeloma UK, and ICR will perform the testing ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... pharmaceutical company advancing targeted antibody-drug conjugate (ADC) therapeutics, today confirmed licensing rights ... (Hybrid Polymerized Liposomal Nanoparticle), a technology developed in collaboration with Children’s Hospital ...
(Date:10/10/2017)... ... October 10, 2017 , ... USDM ... firm for the life sciences and healthcare industries, announces a presentation by Subbu ... , The presentation, “Automating GxP Validation for Agile Cloud Platforms,” will present a ...
(Date:10/9/2017)... ... October 09, 2017 , ... The Giving Tree Wellness ... targeting the needs of consumers who are incorporating medical marijuana into their wellness ... Arizona. , As operators of two successful Valley dispensaries, The Giving Tree’s two ...
Breaking Biology Technology: