Navigation Links
UCSF receives $4.5M to study value of gene sequencing in newborns
Date:9/5/2013

UC San Francisco will receive $4.5 million over the next five years for a pilot project to assess whether large-scale gene sequencing aimed at detecting disorders and conditions can and should become a routine part of newborn testing.

The study is one of four projects launched today by the National Institutes of Health to identify the accuracy and feasibility of providing genetic sequencing as part of, or instead of, the current newborn screening that relies on biochemical changes in the blood. It also will assess what additional information would be useful to have at birth and the ethics and public interest in having such tests performed.

Genomic sequencing has the potential to diagnose a vast array of disorders and conditions at the very start of life, said Alan E. Guttmacher, MD, director of the Eunice Kennedy Shriver National Institute of Child Health and Human Development (ICHD), which is jointly funding the studies. But the ability to decipher an individuals genetic code rapidly also brings with it a host of clinical and ethical issues, which is why it is important that this program explores the trio of technical, clinical, and ethical aspects of genomics research in the newborn period.

The pilots are a core element of the emerging field of precision medicine, which aims to harness vast amounts of genetic and health data to create predictive, preventive and precise care for patients on an international scale. Doing so has the potential to transform medicine, but there are many logistical and ethical hurdles to resolve along the way.

The UCSF team, which also includes bioinformatics experts at UC Berkeley and the Buck Institute for Research on Aging, will study the potential of sequencing the exome the roughly 2 percent of DNA that represents genes which code for proteins as a method of newborn screening. The research will look at the exomes potential for identifying disorders that California currently includes in the newborn screen, as well as those that are not currently screened for, but for which newborns may benefit if detection can occur early in life.

The UCSF research will examine the issue from three vantage points. The first will be a partnership with the California Department of Public Health (CDPH) to test blood drops previously collected from 1,400 children statewide who received standard newborn screening, to determine whether exome sequencing would be more accurate and also whether it provides insights that could lead to improved newborn screening, care and treatment.

My hope is that this will give us solid information on the specificity of gene testing, versus standard biochemical testing, for the disorders we are already screening for, said Robert Nussbaum, MD, who leads the UCSF Division of Medical Genetics and holds the Holly Smith Distinguished Professorship in Science and Medicine at UCSF. In addition, some of the disorders we pick up during screening are chemical abnormalities, but we dont know whether they will actually cause problems for the child. Wed like to know whether there is something in the childrens genes that determines whether these abnormalities actually will cause disease.

The second project will offer genetic testing to patients in a UCSF immune system disorders clinic run by Jennifer Puck, MD, a pediatrician in the UCSF Benioff Childrens Hospital whose research laboratory pioneered the current newborn test for Severe Combined Immunodeficiency (SCID). Parents will be asked to give informed consent for this arm of the project.

While there are several known genetic mutations that lead to the immune disorder, Pucks original test simply looks at a marker of whether children lack the immune cells known as T lymphocytes, which are missing in SCID. This new project will enable the team to assess whether exome sequencing works as well or better than the current test in identifying SCID, as well as other immune system abnormalities that the current test does not cover. Exome sequencing may also give parents information on the genetic basis of their childs disease.

Although new tests can benefit affected infants, extra tests cost money and will have false positives in some patients that cause both anxiety for parents and extra testing for the child, Puck said. The question in this grant is whether we could look at the DNA and see whether its more accurate in testing for these diseases. Thats the promise of genomic technology, but putting it into practice may not be so easy.

The third arm of the project will offer parents genetic testing for newborns at the UCSF Benioff Childrens Hospital to assess whether the child is likely to have adverse reactions to medications based on their genetics an area known as pharmacogenomics. That portion will be conducted in conjunction with renowned UCSF ethicist Barbara Koenig, PhD, who will be studying parents attitudes regarding testing children beyond what is currently offered in newborn screening.

While the first two projects are mainly looking at whether genetic testing would be more accurate, specific and useful than current methods, this third element assesses how willing parents are to get genetic information about their child that may be useful later in life, but not right away.

So far, newborn screening programs have not been directed towards just letting people know about a possible disease risk. There has to be a high probability of serious illness that can be prevented with early intervention, Nussbaum said. Pharmacogenomics is perhaps the most acceptable of tests that imply potential risk. Theres very little risk, and the possibility of great benefit, to knowing whether you will react to a drug or an anesthetic, and the only way to find out besides genetic screening is if youre in the operating room or have filled a prescription and you have a bad reaction.

The research team also intends to develop a participant protection framework for conducting genomic sequencing during infancy and will explore legal issues related to using genome analysis in newborn screening programs. Together, these studies have the potential to provide public health benefit for newborns and research-based information for policy makers.


'/>"/>

Contact: Kristen Bole
kristen.bole@ucsf.edu
415-502-6397
University of California - San Francisco
Source:Eurekalert

Related biology news :

1. In search for a vaccine, IU biologist receives $2.3 million to explore chlamydia genomics
2. Renowned geneticist R. Rodney Howell receives ACMG Foundation Lifetime Achievement Award
3. UF receives $1 million from Keck Foundation to study mechanisms of inherited disease
4. Gladstone scientist Warner C. Greene receives Washington University School of Medicine Alumni Award
5. Carnegies Wolf B. Frommer receives Bogorad Award for Excellence in Plant Biology
6. UC Riverside plant cell biologist receives top scientific honor
7. UC Riverside receives grant for global health and development research
8. Washington University receives $8 million to lead international childhood malnutrition effort
9. SRI Sarnoffs Iris on the Move® N-Glance™ Identification System Receives Lenel Factory Certification
10. SF State biology department receives $1.5 million to support science teaching
11. Dr. Karen Lloyd receives WHOIs Holger W. Jannasch Visiting Scholar Award
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/29/2016)... -- BioDirection, a privately held medical device company developing ... of concussion and other traumatic brain injury (TBI), announced ... with the U.S. Food and Drug Administration (FDA) to ... the meeting company representatives reviewed plans for clinical development ... of a planned pilot trial. "We ...
(Date:11/24/2016)... Cercacor today introduced Ember TM Sport ... non-invasively measure hemoglobin, Oxygen Content, Oxygen Saturation, Perfusion ... in approximately 30 seconds. Smaller than a smartphone, using ... to key data about their bodies to help monitor ... Hemoglobin carries oxygen to muscles. When hemoglobin ...
(Date:11/19/2016)... 2016 Securus Technologies, a leading provider of ... investigation, corrections and monitoring, announced today that it has ... have an independent technology judge determine who has the ... tech/sophisticated telephone calling platform, and the best customer service. ... most of what we do – which clearly is ...
Breaking Biology News(10 mins):
(Date:12/2/2016)... ... December 01, 2016 , ... ... DNA microarray comparative genomic hybridization (array CGH) for HER2 genomic subtyping in ... molecular test results from tumors with previously documented positive, negative, and equivocal ...
(Date:12/2/2016)... ... 01, 2016 , ... The Conference Forum has announced that the 3rd annual ... place on February 1-3, 2017 at the Roosevelt Hotel in New York City. Led ... a unique 360-degree approach, which addresses the most up-to-date information regarding business aspects, clinical ...
(Date:12/2/2016)... ... December 02, 2016 , ... ... dedicated to collaboratively developing improved chemistry, manufacturing and control technologies for the ... UHPLC, with robust, probe-based sampling. , Online liquid chromatography analysis is ...
(Date:12/2/2016)... , December 2, 2016 The ... 2021, growing at a CAGR of 7.3% during the forecast period ... hospitals and diagnostic laboratories segment accounted for the largest share of ... ... report on global immunohistochemistry (IHC) market spread across 225 pages, profiling ...
Breaking Biology Technology: